Distributed Acoustic Sensing (DAS) is a technology used to monitor and analyze acoustic signals along a fiber-optic cable. It has a wide range of applications in various industries, including oil and gas, infrastructure monitoring, security, and environmental monitoring. DAS works by using the fiber-optic cable itself as a sensor to detect acoustic disturbances and vibrations.

Posts

Eric Blow Presents at the IEEE Photonics Conference Singapore on November 10th & 13th

Eric Blow of NEC Labs will address how machine-learning methods applied to distributed acoustic-sensing data can monitor facility perimeters and detect intrusion via walk, dig, or drive events over buried optical fibre—for example achieving ~90% classification accuracy. Later in the week he will explore neuromorphic photonic RF sensing combining silicon photonics with FPGA-based recurrent neural networks, and his intern Yuxin Wang will present a finalist paper on scalable photonic neurons for automatic modulation classification.

Utilizing Distributed Acoustic Sensing with Telecom Fibers for Entomological Observations

The 2021 emergence of Brood X cicadas was monitored in situ in our testbed using a DAS system connected to an outdoor telecom fiber over a 16-day period. The spectral and energy characteristics of the cicada calling signal has been measured and analyzed.

Detection of Waves and Sea-Surface Vessels via Time Domain Only Analysis of Underwater DAS Data

A 100-meter-long fiber optic cable was installed at the bottom of a water tank at the Davidson Laboratory, together with a hydrophone for reference. The water tank is approximately 2.5 meters deep and 95 meters long; the tank also employs a 6-paddle wavemaker which can generate programmable surface waves. A 155-cm-long model boat weighing 6.5 kilograms was automatically dragged on the surface of the tank via an electrical towing mechanism. The movement of the model boat along the fiber cable and over the hydrophone was recorded using a commercially available NEC Distributed Acoustic Sensing (DAS) system and simultaneously by a hydrophone. The experiments were repeated with and without the artificially generated surface waves. The data obtained from the hydrophone and the DAS system are presented and compared. The results show the compatibility between the DAS data and the hydrophone data. More importantly, ourresults show that it is possible to measure the surface waves and to detect a surface vessel approaching the sensor by only using the time domain analysis in terms of detected total energy over time.

CLAP-S: Support Set Based Adaptation for Downstream Fiber-optic Acoustic Recognition

Contrastive Language-Audio Pretraining (CLAP) models have demonstrated unprecedented performance in various acoustic signal recognition tasks. Fiber-optic-based acoustic recognition is one of the most important downstream tasks and plays a significant role in environmental sensing. Adapting CLAP for fiber-optic acoustic recognition has become an active research area. As a non-conventional acoustic sensor, fiberoptic acoustic recognition presents a challenging, domain-specific, low-shot deployment environment with significant domain shifts due to unique frequency response and noise characteristics. To address these challenges, we propose a support-based adaptation method, CLAP-S, which linearly interpolates a CLAP Adapter with the Support Set, leveraging both implicit knowledge through fine-tuning and explicit knowledge retrieved from memory for cross-domain generalization. Experimental results show that our method delivers competitive performance on both laboratory recorded fiber-optic ESC-50 datasets and a real-world fiber optic gunshot-firework dataset. Our research also provides valuable insights for other downstream acoustic recognition tasks.

Underwater Acoustic OFDM Transmission over Optical Fiber with Distributed Acoustic Sensing

We demonstrate fiber-optic acoustic data transmission using distributed acoustic sensing technology in an underwater environment. An acoustic orthogonal frequencydivisionmultiplexing (OFDM) signal transmitted through a fiber-optic cable deployed in a standard 40-meter-scale underwater testbed.

CLAP-S: Support Set Based Adaptation for Downstream Fiber-optic Acoustic Recognition

Contrastive Language-Audio Pretraining (CLAP) models have demonstrated unprecedented performance in various acoustic signal recognition tasks. Fiber optic-based acoustic recognition is one of the most important downstream tasks and plays a significant role in environmental sensing. Adapting CLAP for fiber-optic acoustic recognition has become an active research area. As a non-conventional acoustic sensor, fiber-optic acoustic recognition presents a challenging, domain-specific, low-shot deployment environment with significant domain shifts due to unique frequency response and noise characteristics. To address these challenges, we propose a support-based adaptation method, CLAP-S, which linearly interpolates a CLAP Adapter with the Support Set, leveraging both implicit knowledge through fine-tuning and explicit knowledge retrieved from memory for cross-domain generalization. Experimental results show that our method delivers competitive performance on both laboratory-recorded fiber-optic ESC-50 datasets and a real-world fiber-optic gunshot-firework dataset. Our research also provides valuable insights for other downstream acoustic recognition tasks.

Low-rank Constrained Multichannel Signal Denoising Considering Channel-dependent Sensitivity Inspired by Self-supervised Learning for Optical Fiber Sensing

Optical fiber sensing is a technology wherein audio, vibrations, and temperature are detected using an optical fiber; especially the audio/vibrations-aware sensing is called distributed acoustic sensing (DAS). In DAS, observed data, which is comprised of multichannel data, has suffered from severe noise levels because of the optical noise or the installation methods. In conventional methods for denoising DAS data, signal-processing- or deep-neural-network (DNN)-based models have been studied. The signal-processing-based methods have the interpretability, i.e., non-black box. The DNN-based methods are good at flexibility designing network architectures and objective functions, that is, priors. However, there is no balance between the interpretability and the flexibility of priors in the DAS studies. The DNN-based methods also require a large amount of training data in general. To address the problems, we propose a DNN-structure signal-processing-based denoising method in this paper. As the priors of DAS, we employ spatial knowledge; low rank and channel-dependent sensitivity using the DNN-based structure.The result of fiber-acoustic sensing shows that the proposed method outperforms the conventional methods and the robustness to the number of the spatial ranks. Moreover, the optimized parameters of the proposed method indicate the relationship with the channel sensitivity; the interpretability.

Sarper Ozharar Receives Achievement in Science and Technology Award from Koç University

Sarper Ozharar was awarded an Achievement in Science and Technology Award from Koç University on their notable 30th anniversary.  As an alumnus of this esteemed institution, Sarper shared that this recognition is especially meaningful to him, marking a significant milestone in his professional journey.

Beyond Communication: Telecom Fiber Networks for Rain Detection and Classification

We present the field trial of an innovative neural network and DAS-based technique, employing a pre-trained CNN fine-tuning strategy for effective rain detection and classification within two practical scenarios.

Long Reach Fibre Optic Distributed Acoustic Sensing using Enhanced Scattering Fibre

We report significant noise reduction in distributed acoustic sensing (DAS) link using enhanced-scatter fibre (ESF). The longest reach of 195km DAS link without inline amplifications is also demonstrated. We further present demonstration of simultaneous fibre-optic sensing and 400Gb/s data transmissions over 195km fibre using ESF.