Distributed Acoustic Sensing (DAS) is a technology used to monitor and analyze acoustic signals along a fiber-optic cable. It has a wide range of applications in various industries, including oil and gas, infrastructure monitoring, security, and environmental monitoring. DAS works by using the fiber-optic cable itself as a sensor to detect acoustic disturbances and vibrations.

Posts

Using Global Fiber Networks for Environmental Sensing

We review recent advances in distributed fiber optic sensing (DFOS) and their applications. The scattering mechanisms in glass, which are exploited for reflectometry-based DFOS, are Rayleigh, Brillouin, and Raman scatterings. These are sensitive to either strain and/or temperature, allowing optical fiber cables to monitor their ambient environment in addition to their conventional role as a medium for telecommunications. Recently, DFOS leveraged technologies developed for telecommunications, such as coherent detection, digital signal processing, coding, and spatial/frequency diversity, to achieve improved performance in terms of measurand resolution, reach, spatial resolution, and bandwidth. We review the theory and architecture of commonly used DFOS methods. We provide recent experimental and field trial results where DFOS was used in wide-ranging applications, such as geohazard monitoring, seismic monitoring, traffic monitoring, and infrastructure health monitoring. Events of interest often have unique signatures either in the spatial, temporal, frequency, or wavenumber domains. Based on the temperature and strain raw data obtained from DFOS, downstream postprocessing allows the detection, classification, and localization of events. Combining DFOS with machine learning methods, it is possible to realize complete sensor systems that are compact, low cost, and can operate in harsh environments and difficult-to-access locations, facilitating increased public safety and smarter cities.

Rain Intensity Detection and Classification with Pre-existing Telecom Fiber Cables

For the first time, we demonstrate detection and classification of rain intensity using Distributed Acoustic Sensing (DAS). An artificial neural network was applied for rain intensity classification and high precision of over 96% was achieved.

Simultaneous Fiber Sensing and Communications

We review recent advances aimed at increasing the reach of distributed fiber optic sensing with simultaneous data transmission. We review two methods based on measurement of accumulated phase on telecom signals, and chirp-pulsed DAS with inline amplification and frequency diversity.

Distributed Acoustic Sensing for Datacenter Optical Interconnects using Self-Homodyne Coherent Detection

We demonstrate distributed acoustic sensing (DAS) over a bidirectional datacenter link which uses self-homodyne coherent detection for the data signal. Frequency multiplexing allows sharing the optoelectronic hardware, and enables DAS as an auxiliary function.

Automatic Fine-Grained Localization of Utility Pole Landmarks on Distributed Acoustic Sensing Traces Based on Bilinear Resnets

In distributed acoustic sensing (DAS) on aerial fiber-optic cables, utility pole localization is a prerequisite for any subsequent event detection. Currently, localizing the utility poles on DAS traces relies on human experts who manually label the poles’ locations by examining DAS signal patterns generated in response to hammer knocks on the poles. This process is inefficient, error-prone and expensive, thus impractical and non-scalable for industrial applications. In this paper, we propose two machine learning approaches to automate this procedure for large-scale implementation. In particular, we investigate both unsupervised and supervised methods for fine-grained pole localization. Our methods are tested on two real-world datasets from field trials, and demonstrate successful estimation of pole locations at the same level of accuracy as human experts and strong robustness to label noises.