Dongsheng Luo works at Florida International University.

Posts

Learning to Drop: Robust Graph Neural Network via Topological Denoising

Graph Neural Networks (GNNs) have shown to be powerful tools for graph analytics. The key idea is to recursively propagate and aggregate information along the edges of the given graph. Despite their success, however, the existing GNNs are usually sensitive to the quality of the input graph. Real-world graphs are often noisy and contain task-irrelevant edges, which may lead to suboptimal generalization performance in the learned GNN models. In this paper, we propose PTDNet, a parameterized topological denoising network, to improve the robustness and generalization performance of GNNs by learning to drop task-irrelevant edges. PTDNet prunes task-irrelevant edges by penalizing the number of edges in the sparsified graph with parameterized networks. To take into consideration the topology of the entire graph, the nuclear norm regularization is applied to impose the low-rank constraint on the resulting sparsified graph for better generalization. PTDNet can be used as a key component in GNN models to improve their performances on various tasks, such as node classification and link prediction. Experimental studies on both synthetic and benchmark datasets show that PTDNet can improve the performance of GNNs significantly and the performance gain becomes larger for more noisy datasets.

Parameterized Explainer for Graph Neural Network

Despite recent progress in Graph Neural Networks (GNNs), explaining predictions made by GNNs remains a challenging open problem. The leading method independently addresses the local explanations (i.e., important subgraph structure and node features) to interpret why a GNN model makes the prediction for a single instance, e.g. a node or a graph. As a result, the explanation generated is painstakingly customized for each instance. The unique explanation interpreting each instance independently is not sufficient to provide a global understanding of the learned GNN model, leading to the lack of generalizability and hindering it from being used in the inductive setting. Besides, as it is designed for explaining a single instance, it is challenging to explain a set of instances naturally (e.g., graphs of a given class). In this study, we address these key challenges and propose PGExplainer, a parameterized explainer for GNNs. PGExplainer adopts a deep neural network to parameterize the generation process of explanations, which enables PGExplainer a natural approach to explaining multiple instances collectively. Compared to the existing work, PGExplainer has better generalization ability and can be utilized in an inductive setting easily. Experiments on both synthetic and real-life datasets show highly competitive performance with up to 24.7% relative improvement in AUC on explaining graph classification over the leading baseline.

Adaptive Neural Network for Node Classification in Dynamic Networks

Given a network with the labels for a subset of nodes, transductive node classification targets to predict the labels for the remaining nodes in the network. This technique has been used in a variety of applications such as voxel functionality detection in brain network and group label prediction in social network. Most existing node classification approaches are performed in static networks. However, many real-world networks are dynamic and evolve over time. The dynamics of both node attributes and network topology jointly determine the node labels. In this paper, we study the problem of classifying the nodes in dynamic networks. The task is challenging for three reasons. First, it is hard to effectively learn the spatial and temporal information simultaneously. Second, the network evolution is complex. The evolving patterns lie in both node attributes and network topology. Third, for different networks or even different nodes in the same network, the node attributes, the neighborhood node representations and the network topology usually affect the node labels differently, it is desirable to assess the relative importance of different factors over evolutionary time scales. To address the challenges, we propose AdaNN, an adaptive neural network for transductive node classification. AdaNN learns node attribute information by aggregating the node and its neighbors, and extracts network topology information with a random walk strategy. The attribute information and topology information are further fed into two connected gated recurrent units to learn the spatio-temporal contextual information. Additionally, a triple attention module is designed to automatically model the different factors that influence the node representations. AdaNN is the first node classification model that is adaptive to different kinds of dynamic networks. Extensive experiments on real datasets demonstrate the effectiveness of AdaNN.

Spatio-Temporal Attentive RNN for Node Classification in Temporal Attributed Graphs

Node classification in graph-structured data aims to classify the nodes where labels are only available for a subset of nodes. This problem has attracted considerable research efforts in recent years. In real-world applications, both graph topology and node attributes evolve over time. Existing techniques, however, mainly focus on static graphs and lack the capability to simultaneously learn both temporal and spatial/structural features. Node classification in temporal attributed graphs is challenging for two major aspects. First, effectively modeling the spatio-temporal contextual information is hard. Second, as temporal and spatial dimensions are entangled, to learn the feature representation of one target node, it’s desirable and challenging to differentiate the relative importance of different factors, such as different neighbors and time periods. In this paper, we propose STAR, a spatio-temporal attentive recurrent network model, to deal with the above challenges. STAR extracts the vector representation of neighborhood by sampling and aggregating local neighbor nodes. It further feeds both the neighborhood representation and node attributes into a gated recurrent unit network to jointly learn the spatio-temporal contextual information. On top of that, we take advantage of the dual attention mechanism to perform a thorough analysis on the model interpretability. Extensive experiments on real datasets demonstrate the effectiveness of the STAR model.