Integrated Systems

Read our publications from our world-class team of researchers from our Integrated Systems department which innovates, designs, and prototypes high-performance intelligent distributed systems, applications, and services on complex, large-scale communication networks like 5G and beyond. We develop next-generation wireless technologies for sensing the world, localizing critical assets, and improving the capacity, coverage, and scalability of communication networks like 5G and beyond.

Posts

Multi-user Beam Alignment in Presence of Multi-path

To overcome the high pathloss and the intense shadowing in millimeterwave (mmWave) communications, effective beamforming schemes are required which incorporate narrow beams with high beamforming gains. The mm Wave channel consists of a few spatial clusters each associated with an angle of departure (AoD). The narrow beams must be aligned with the channel AoDs to increase the beamforming gain. This is achieved through a procedure called beam alignment (BA). Most of the BA schemes in the literature consider channels with a single dominant path while in practice the channel has a few resolvable paths with different AoDs, hence, such BA schemes may not work correctly in the presence of multi-path or at the least do not exploit such multi path to achieve diversity or increase robustness. In this paper, we propose an efficient BA schemes in presence of multi-path. The proposed BA scheme transmits probing packets using a set of scanning beams and receives the feedback for all the scanning beams at the end of probing phase from each user. We formulate the BA scheme as minimizing the expected value of the average transmission beamwidth under different policies. The policy is defined as a function from the set of received feedback to the set of transmission beams (TB). In order to maximize the number of possible feedback sequences, we prove that the set of scanning beams (SB) has an special form, namely, Tulip Design. Consequently, we rewrite the minimization problem with a set of linear constraints and reduced number of variables which is solved by using an efficient greedy algorithm.

Codebook Design for Composite Beamforming in Next generation mmWave Systems

In pursuance of the unused spectrum in higher frequencies, millimeter wave (mmWave) bands have a pivotal role. However, the high path loss and poor scattering associated with mmWave communications highlight the necessity of employing effective beamforming techniques. In order to efficiently search for the beam to serve a user and to jointly serve multiple users it is often required to use a composite beam which consists of multiple disjoint lobes. A composite beam covers multiple desired angular coverage intervals (ACIs) and ideally has maximum and uniform gain (smoothness) within each desired ACI, negligible gain (leakage) outside the desired ACIs, and sharp edges. We propose an algorithm for designing such ideal composite codebook by providing an analytical closed form solution with low computational complexity. There is a fundamental trade off between the gain, leakage and smoothness of the beams. Our design allows to achieve different values in such trade off based on changing the design parameters. We highlight the shortcomings of the uniform linear arrays (ULAs) in building arbitrary composite beams. Consequently, we use a recently introduced twin ULA (TULA) antenna structure to effectively resolve these inefficiencies. Numerical results are used to validate the theoretical findings.

AQuA: Analytical Quality Assessment for Optimizing Video Analytics Systems

Millions of cameras at edge are being deployed to power a variety of different deep learning applications. However, the frames captured by these cameras are not always pristine – they can be distorted due to lighting issues, sensor noise, compression etc. Such distortions not only deteriorate visual quality, they impact the accuracy of deep learning applications that process such video streams. In this work, we introduce AQuA, to protect application accuracy against such distorted frames by scoring the level of distortion in the frames. It takes into account the analytical quality of frames, not the visual quality, by learning a novel metric, classifier opinion score, and uses a lightweight, CNN-based, object-independent feature extractor. AQuA accurately scores distortion levels of frames and generalizes to multiple different deep learning applications. When used for filtering poor quality frames at edge, it reduces high-confidence errors for analytics applications by 17%. Through filtering, and due to its low overhead (14ms), AQuA can also reduce computation time and average bandwidth usage by 25%.

Edge-based fever screening system over private 5G

Edge computing and 5G have made it possible to perform analytics closer to the source of data and achieve super-low latency response times, which isn’t possible with centralized cloud deployment. In this paper, we present a novel fever screening system, which uses edge machine learning techniques and leverages private 5G to accurately identify and screen individuals with fever in real-time. Particularly, we present deep-learning based novel techniques for fusion and alignment of cross-spectral visual and thermal data streams at the edge. Our novel Cross-Spectral Generative Adversarial Network (CS-GAN) synthesizes visual images that have the key, representative object level features required to uniquely associate objects across visual and thermal spectrum. Two key features of CS-GAN are a novel, feature-preserving loss function that results in high-quality pairing of corresponding cross-spectral objects, and dual bottleneck residual layers with skip connections (a new, network enhancement) to not only accelerate real-time inference, but to also speed up convergence during model training at the edge. To the best of our knowledge, this is the first technique that leverages 5G networks and limited edge resources to enable real-time feature-level association of objects in visual and thermal streams (30 ms per full HD frame on an Intel Core i7-8650 4-core, 1.9GHz mobile processor). To the best of our knowledge, this is also the first system to achieve real-time operation, which has enabled fever screening of employees and guests in arenas, theme parks, airports and other critical facilities. By leveraging edge computing and 5G, our fever screening system is able to achieve 98.5% accuracy and is able to process ∼ 5X more people when compared to a centralized cloud deployment.

Shaping mmWave Wireless Channel via Multi-Beam Design using Reconfigurable Intelligent Surfaces

Millimeter-wave (mmWave) communications is considered as a key enabler towards the realization of next-generation wireless networks, due to the abundance of available spectrum at mmWave frequencies. However, mmWave suffers from high free-space path-loss and poor scattering resulting in mostly line-of-sight (LoS) channels which result in a lack of coverage. Reconfigurable intelligent surfaces (RIS), as a new paradigm, have the potential to fill the coverage holes by shaping the wireless channel. In this paper, we propose a novel approach for designing RIS with elements arranged in a uniform planar array (UPA) structure. In what we refer to as multi-beamforming, We propose and design RIS such that the reflected beam comprises multiple disjoint lobes. Moreover, the beams have optimized gain within the desired angular coverage with fairly sharp edges avoiding power leakage to other regions. We provide a closed-form low-complexity solution for the multi-beamforming design. We confirm our theoretical results by numerical analysis.

Magic-Pipe: Self-optimizing video analytics pipelines

Microservices-based video analytics pipelines routinely use multiple deep convolutional neural networks. We observe that the best allocation of resources to deep learning engines (or microservices) in a pipeline, and the best configuration of parameters for each engine vary over time, often at a timescale of minutes or even seconds based on the dynamic content in the video. We leverage these observations to develop Magic-Pipe, a self-optimizing video analytic pipeline that leverages AI techniques to periodically self-optimize. First, we propose a new, adaptive resource allocation technique to dynamically balance the resource usage of different microservices, based on dynamic video content. Then, we propose an adaptive microservice parameter tuning technique to balance the accuracy and performance of a microservice, also based on video content. Finally, we propose two different approaches to reduce unnecessary computations due to unavoidable mismatch of independently designed, re-usable deep-learning engines: a deep learning approach to improve the feature extractor performance by filtering inputs for which no features can be extracted, and a low-overhead graph-theoretic approach to minimize redundant computations across frames. Our evaluation of Magic-Pipe shows that pipelines augmented with self-optimizing capability exhibit application response times that are an order of magnitude better than the original pipelines, while using the same hardware resources, and achieving similar high accuracy.

SmartSlice: Dynamic, Self-optimization of Application’s QoS requests to 5G networks

Applications can tailor a network slice by specifying a variety of QoS attributes related to application-specific performance, function or operation. However, some QoS attributes like guaranteed bandwidth required by the application do vary over time. For example, network bandwidth needs of video streams from surveillance cameras can vary a lot depending on the environmental conditions and the content in the video streams. In this paper, we propose a novel, dynamic QoS attribute prediction technique that assists any application to make optimal resource reservation requests at all times. Standard forecasting using traditional cost functions like MAE, MSE, RMSE, MDA, etc. don’t work well because they do not take into account the direction (whether the forecasting of resources is more or less than needed), magnitude (by how much the forecast deviates, and in which direction), or frequency (how many times the forecast deviates from actual needs, and in which direction). The direction, magnitude and frequency have a direct impact on the application’s accuracy of insights, and the operational costs. We propose a new, parameterized cost function that takes into account all three of them, and guides the design of a new prediction technique. To the best of our knowledge, this is the first work that considers time-varying application requirements and dynamically adjusts slice QoS requests to 5G networks in order to ensure a balance between application’s accuracy and operational costs. In a real-world deployment of a surveillance video analytics application over 17 cameras, we show that our technique outperforms other traditional forecasting methods, and it saves 34% of network bandwidth (over a ~24 hour period) when compared to a static, one-time reservation.

CamTuner: Reinforcement Learning based System for Camera Parameter Tuning to enhance Analytics

Video analytics systems critically rely on video cameras, which capture high quality video frames, to achieve high analytics accuracy. Although modern video cameras often expose tens of configurable parameter settings that can be set by end users, deployment of surveillance cameras today often uses a fixed set of parameter settings because the end users lack the skill or understanding to reconfigure these parameters. In this paper, we first show that in a typical surveillance camera deployment, environmental condition changes can significantly affect the accuracy of analytics units such as person detection, face detection and face recognition, and how such adverse impact can be mitigated by dynamically adjusting camera settings. We then propose CAMTUNER, a framework that can be easily applied to an existing video analytics pipeline (VAP) to enable automatic and dynamic adaptation of complex camera settings to changing environmental conditions, and autonomously optimize the accuracy of analytics units (AUs) in the VAP. CAMTUNER is based on SARSA reinforcement learning (RL) and it incorporates two novel components: a light weight analytics quality estimator and a virtual camera. CAMTUNER is implemented in a system with AXIS surveillance cameras and several VAPs (with various AUs) that processed day long customer videos captured at airport entrances. Our evaluations show that CAMTUNER can adapt quickly to changing environments. We compared CAMTUNER with two alternative approaches where either static camera settings were used, or a strawman approach where camera settings were manually changed every hour (based on human perception of quality). We observed that for the face detection and person detection AUs, CAMTUNER is able to achieve up to 13.8% and 9.2% higher accuracy, respectively, compared to the best of the two approaches (average improvement of 8% for both AUs).

UAC: An Uncertainty-Aware Face Clustering Algorithm

We investigate ways to leverage uncertainty in face images to improve the quality of the face clusters. We observe that popular clustering algorithms do not produce better quality clusters when clustering probabilistic face representations that implicitly model uncertainty – these algorithms predict up to 9.6X more clusters than the ground truth for the IJB-A benchmark. We empirically analyze the causes for this unexpected behavior and identify excessive false-positives and false-negatives (when comparing face-pairs) as the main reasons for poor quality clustering. Based on this insight, we propose an uncertainty-aware clustering algorithm, UAC, which explicitly leverages uncertainty information during clustering to decide when a pair of faces are similar or when a predicted cluster should be discarded. UAC considers (a) uncertainty of faces in face-pairs, (b) bins face-pairs into different categories based on an uncertainty threshold, (c) intelligently varies the similarity threshold during clustering to reduce false-negatives and false-positives, and (d) discards predicted clusters that exhibit a high measure of uncertainty. Extensive experimental results on several popular benchmarks and comparisons with state-of-the-art clustering methods show that UAC produces significantly better clusters by leveraging uncertainty in face images – predicted number of clusters is up to 0.18X more of the ground truth for the IJB-A benchmark.

AppSlice: A system for application-centric design of 5G and edge computing applications

Applications that use edge computing and 5G to improve response times consume both compute and network resources. However, 5G networks manage only network resources without considering the application’s compute requirements, and container orchestration frameworks manage only compute resources without considering the application’s network requirements. We observe that there is a complex coupling between an application’s compute and network usage, which can be leveraged to improve application performance and resource utilization. We propose a new, declarative abstraction called app slice that jointly considers the application’s compute and network requirements. This abstraction leverages container management systems to manage edge computing resources, and 5G network stacks to manage network resources, while the joint consideration of coupling between compute and network usage is explicitly managed by a new runtime system, which delivers the declarative semantics of the app slice. The runtime system also jointly manages the edge compute and network resource usage automatically across different edge computing environments and 5G networks by using two adaptive algorithms. We implement a complex, real-world, real-time monitoring application using the proposed app slice abstraction, and demonstrate on a private 5G/LTE testbed that the proposed runtime system significantly improves the application performance and resource usage when compared with the case where the coupling between the compute and network resource usage is ignored.