Integrated Systems

Read our publications from our world-class team of researchers from our Integrated Systems department which innovates, designs, and prototypes high-performance intelligent distributed systems, applications, and services on complex, large-scale communication networks like 5G and beyond. We develop next-generation wireless technologies for sensing the world, localizing critical assets, and improving the capacity, coverage, and scalability of communication networks like 5G and beyond.


Enabling Cooperative Hybrid Beamforming in TDD-based Distributed MIMO Systems

Distributed massive MIMO networks are envisioned to realize cooperative multi-point transmission in next-generation wireless systems. For efficient cooperative hybrid beamforming, the cluster of access points (APs) needs to obtain precise estimates of the uplink channel to perform reliable downlink precoding. However, due to the radio frequency (RF) impairments between the transceivers at the two en-points of the wireless channel, full channel reciprocity does not hold which results in performance degradation in the cooperative hybrid beamforming (CHBF) unless a suitable reciprocity calibration mechanism is in place. We propose a two-step approach to calibrate any two hybrid nodes in the distributed MIMO system. We then present and utilize the novel concept of reciprocal tandem to propose a low-complexity approach for jointly calibrating the cluster of APs and estimating the downlink channel. Finally, we validate our calibration technique’s effectiveness through numerical simulation.

Differentiable JPEG: The Devil is in The Details

JPEG remains one of the most widespread lossy image coding methods. However, the non-differentiable nature of JPEG restricts the application in deep learning pipelines. Several differentiable approximations of JPEG have recently been proposed to address this issue. This paper conducts a comprehensive review of existing diff. JPEG approaches and identifies critical details that have been missed by previous methods. To this end, we propose a novel diff. JPEG approach, overcoming previous limitations. Our approach is differentiable w.r.t. the input image, the JPEG quality, the quantization tables, and the color conversion parameters. We evaluate the forward and backward performance of our diff. JPEG approach against existing methods. Additionally, extensive ablations are performed to evaluate crucial design choices. Our proposed diff. JPEG resembles the (non-diff.) reference implementation best, significantly surpassing the recent-best diff. approach by 3.47dB (PSNR) on average. For strong compression rates, we can even improve PSNR by 9.51dB. Strong adversarial attack results are yielded by our diff. JPEG, demonstrating the effective gradient approximation. Our code is available at

Scale Up while Scaling Out Microservices in Video Analytics Pipelines

Modern video analytics applications comprise multiple microservices chained together as pipelines and executed on container orchestration platforms like Kubernetes. Kubernetes automatically handles the scaling of these microservices for efficient application execution. There are two popular choices for scaling microservices in Kubernetes i.e. scaling Out using Horizontal Pod Autoscaler (HPA) and scaling Up using Vertical Pod Autoscaler (VPA). Both these have been studied independently, but there isn’t much prior work studying the joint scaling of these two. This paper investigates joint scaling, i.e., scaling up while scaling out (HPA) is in action. In particular, we focus on scaling up CPU resources allocated to the application microservices. We show that allocating fixed resources does not work well for different workloads for video analytics pipelines. We also show that Kubernetes’ VPA in conjunction with HPA does not work well for varying application workloads. As a remedy to this problem, in this paper, we propose DataX AutoScaleUp, which performs efficiently scaling up of CPU resources allocated to microservices in video analytics pipelines while Kubernetes’ HPA is operational. DataX AutoScaleUp uses novel techniques to adjust the allocated computing resources to different microservices in video analytics pipelines to improve overall application performance. Through real-world video analytics applications like Face Recognition and Human Attributes, we show that DataX AutoScaleUp can achieve up to 1.45X improvement in application processing rate when compared to alternative approaches with fixed CPU allocation and dynamic CPU allocation using VPA.

Semantic Multi-Resolution Communications

Deep learning based joint source-channel coding (JSCC) has demonstrated significant advancements in data reconstruction compared to separate source-channel coding (SSCC). This superiority arises from the suboptimality of SSCC when dealing with finite block-length data. Moreover, SSCC falls short in reconstructing data in a multi-user and/or multi-resolution fashion, as it only tries to satisfy the worst channel and/or the highest quality data. To overcome these limitations, we propose a novel deep learning multi-resolution JSCC framework inspired by the concept of multi-task learning (MTL). This proposed framework excels at encoding data for different resolutions through hierarchical layers and effectively decodes it by leveraging both current and past layers of encoded data. Moreover, this framework holds great potential for semantic communication, where the objective extends beyond data reconstruction to preserving specific semantic attributes throughout the communication process. These semantic features could be crucial elements such as class labels, essential for classification tasks, or other key attributes that require preservation. Within this framework, each level of encoded data can be carefully designed to retain specific data semantics. As a result, the precision of a semantic classifier can be progressively enhanced across successive layers, emphasizing the preservation of targeted semantics throughout the encoding and decoding stages. We conduct experiments on MNIST and CIFAR10 dataset. The experiment with both datasets illustrates that our proposed method is capable of surpassing the SSCC method in reconstructing data with different resolutions, enabling the extraction of semantic features with heightened confidence in successive layers. This capability is particularly advantageous for prioritizing and preserving more crucial semantic features within the datasets.

Blind Cyclic Prefix-based CFO Estimation in MIMO-OFDM Systems

Low-complexity estimation and correction of carrier frequency offset (CFO) are essential in orthogonal frequency division multiplexing (OFDM). In this paper, we propose a low overhead blind CFO estimation technique based on cyclic prefix (CP), in multi-input multi-output (MIMO)-OFDM systems. We propose to use antenna diversity for CFO estimation. Given that the RF chains for all antenna elements at a communication node share the same clock, the carrier frequency offset (CFO) between two points may be estimated by using the combination of the received signal at all antennas. We improve our method by combining the antenna diversity with time diversity by considering the CP for multiple OFDM symbols. We provide a closed-form expression for CFO estimation and present algorithms that can considerably improve the CFO estimation performance at the expense of a linear increase in computational complexity. We validate the effectiveness of our estimation scheme via extensive numerical analysis.

Deep Learning-Based Real-Time Quality Control of Standard Video Compression for Live Streaming

Ensuring high-quality video content for wireless users has become increasingly vital. Nevertheless, maintaining a consistent level of video quality faces challenges due to the fluctuating encoded bitrate, primarily caused by dynamic video content, especially in live streaming scenarios. Video compression is typically employed to eliminate unnecessary redundancies within and between video frames, thereby reducing the required bandwidth for video transmission. The encoded bitrate and the quality of the compressed video depend on encoder parameters, specifically, the quantization parameter (QP). Poor choices of encoder parameters can result in reduced bandwidth efficiency and high likelihood of non-conformance. Non-conformance refers to the violation of the peak signal-to-noise ratio (PSNR) constraint for an encoded video segment. To address these issues, a real-time deep learning-based H.264 controller is proposed. This controller dynamically estimates the optimal encoder parameters based on the content of a video chunk with minimal delay. The objective is to maintain video quality in terms of PSNR above a specified threshold while minimizing the average bitrate of the compressed video. Experimental results, conducted on both QCIF dataset and a diverse range of random videos from public datasets, validate the effectiveness of this approach. Notably, it achieves improvements of up to 2.5 times in average bandwidth usage compared to the state-of-the-art adaptive bitrate video streaming, with a negligible non-conformance probability below 10?2.

Citizen Science for the Sea with Information Technologies: An Open Platform for Gathering Marine Data and Marine Litter Detection from Leisure Boat Instruments

Data crowdsourcing is an increasingly pervasive and lifestyle-changing technology due to the flywheel effect that results from the interaction between the Internet of Things and Cloud Computing. This paper presents the Citizen Science for the Sea with Information Technologies (C4Sea-IT) framework. It is an open platform for gathering marine data from leisure boat instruments. C4Sea-IT aims to provide a coastal marine data gathering, moving, processing, exchange, and sharing platform using the existing navigation instruments and sensors for today’s leisure and professional vessels. In this work, a use case for the detection and tracking of marine litter is shown. The final goal is weather/ocean forecasts argumentation with Artificial Intelligence prediction models trained with crowdsourced data.

Deep Video Codec Control

Deep Video Codec Control Lossy video compression is commonly used when transmitting and storing video data. Unified video codecs (e.g., H.264 or H.265) remain the emph(Unknown sysvar: (de facto)) standard, despite the availability of advanced (neural) compression approaches. Transmitting videos in the face of dynamic network bandwidth conditions requires video codecs to adapt to vastly different compression strengths. Rate control modules augment the codec’s compression such that bandwidth constraints are satisfied and video distortion is minimized. While, both standard video codes and their rate control modules are developed to minimize video distortion w.r.t. human quality assessment, preserving the downstream performance of deep vision models is not considered. In this paper, we present the first end-to-end learnable deep video codec control considering both bandwidth constraints and downstream vision performance, while not breaking existing standardization. We demonstrate for two common vision tasks (semantic segmentation and optical flow estimation) and on two different datasets that our deep codec control better preserves downstream performance than using 2-pass average bit rate control while meeting dynamic bandwidth constraints and adhering to standardizations.

Retrospective : A Dynamically Configurable Coprocessor For Convolutional Neural Networks

Retrospective : A dynamically configurable coprocessor for convolutional neural networks In 2008, parallel computing posed significant challenges due to the complexities of parallel programming and the bottlenecks associated with efficient parallel execution. Inspired by the remarkable scalability achieved by networking and storage systems in handling extensive packet traffic and persistent data respectively by leveraging best-effort service, we proposed a new and fundamentally different approach of best-effort computing.Having observed that a broad spectrum of existing and emerging computing workloads were from applications that had an inherent forgiving nature [2], [5], we proposed best effort computing. The new approach resulted in disproportionate gains in power, energy and latency, while improving performance. While contemplating the concept of best-effort computing [2], we noticed the resurgence of convolutional neural networks, which generated approximate but acceptable outcomes for numerous recognition, mining, and synthesis tasks. The lead author of this retrospective had previously conducted research on neural networks for his doctoral dissertation over a decade ago, and the reemergence of neural networks proved both surprising and exciting. Recognizing the connection between best-effort computing and convolutional neural networks, in 2008 we embarked on developing a programmable and dynamically reconfigurable convolutional neural network capable of performing best effort computing for various machine learning tasks that inherently allow for multiple acceptable answers. This combination of our thoughts on best-effort computing and the gradual evolution of convolutional neural networks (deep neural networks emerged much later) culminated in our 2010 ISCA work on dynamically reconfigurable convolutional neural networks.

AnB: Application-In-A-Box To Rapidly Deploy and Self-Optimize 5G Apps

AnB: Application-in-a-Box to rapidly deploy and self-optimize 5G apps We present Application in a Box (AnB) product concept aimed at simplifying the deployment and operation of remote 5G applications. AnB comes pre-configured with all necessary hardware and software components, including sensors like cameras, hardware and software components for a local 5G wireless network, and 5G-ready apps. Enterprises can easily download additional apps from an App Store. Setting up a 5G infrastructure and running applications on it is a significant challenge, but AnB is designed to make it fast, convenient, and easy, even for those without extensive knowledge of software, computers, wireless networks, or AI-based analytics. With AnB, customers only need to open the box, set up the sensors, turn on the 5G networking and edge computing devices, and start running their applications. Our system software automatically deploys and optimizes the pipeline of microservices in the application on a tiered computing infrastructure that includes device, edge, and cloud computing. Dynamic resource management, placement of critical tasks for low-latency response, and dynamic network bandwidth allocation for efficient 5G network usage are all automatically orchestrated. AnB offers cost savings, simplified setup and management, and increased reliability and security. We’ve implemented several real-world applications, such as collision prediction at busy traffic light intersections and remote construction site monitoring using video analytics. With AnB, deployment and optimization effort can be reduced from several months to just a few minutes. This is the first-of-its-kind approach to easing deployment effort and automating self-optimization of the application during system operation.