Kai Li is a former researcher from our Machine Learning Department.

Posts

Unsupervised Anomaly Detection with Self-Training and Knowledge Distillation

Anomaly Detection (AD) aims to find defective patterns or abnormal samples among data, and has been a hot research topic due to various real-world applications. While various AD methods have been proposed, most of them assume the availability of a clean (anomaly-free) training set, which, however, may be hard to guarantee in many real-world industry applications. This motivates us to investigate Unsupervised Anomaly Detection (UAD) in which the training set includes both normal and abnormal samples. In this paper, we address the UAD problem by proposing a Self-Training and Knowledge Distillation (STKD) model. STKD combats anomalies in the training set by iteratively alternating between excluding samples of high anomaly probabilities and training the model with the purified training set. Despite that the model is trained with a cleaner training set, the inevitably existing anomalies may still cause negative impact. STKD alleviates this by regularizing the model to respond similarly to a teacher model which has not been trained with noisy data. Experiments show that STKD consistently produces more robust performance with different levels of anomalies.

StyleT2I: Towards Compositional and High-Fidelity Text-to-Image Synthesis

Although progress has been made for text-to-image synthesis, previous methods fall short of generalizing to unseen or underrepresented attribute compositions in the input text. Lacking compositionality could have severe implications for robustness and fairness, e.g., inability to synthesize the face images of underrepresented demographic groups. In this paper, we introduce a new framework, StyleT2I, to improve the compositionality of text-to-image synthesis. Specifically, we propose a CLIP-guided Contrastive Loss to better distinguish different compositions among different sentences. To further improve the compositionality, we design a novel Semantic Matching Loss and a Spatial Constraint to identify attributes’ latent directions for intended spatial region manipulations, leading to better disentangled latent representations of attributes. Based on the identified latent directions of attributes, we propose Compositional Attribute Adjustment to adjust the latent code, resulting in better compositionality of image synthesis. In addition, we leverage the l2 -norm regularization of identified latent directions (norm penalty) to strike a nice balance between image-text alignment and image fidelity. In the experiments, we devise a new dataset split and an evaluation metric to evaluate the compositionality of text-to-image synthesis models. The results show that StyleT2I outperforms previous approaches in terms of the consistency between the input text and synthesized images and achieves higher fidelity

Fast Few-shot Debugging for NLU Test Suites

We study few-shot debugging of transformer based natural language understanding models, using recently popularized test suites to not just diagnose but correct a problem. Given a few debugging examples of a certain phenomenon, and a held-out test set of the same phenomenon, we aim to maximize accuracy on the phenomenon at a minimal cost of accuracy on the original test set. We examine several methods that are faster than full epoch retraining. We introduce a new fast method, which samples a few in-danger examples from the original training set. Compared to fast methods using parameter distance constraints or Kullback-Leibler divergence, we achieve superior original accuracy for comparable debugging accuracy.

On Novel Object Recognition: A Unified Framework for Discriminability and Adaptability

The rich and accessible labeled data fueled the revolutionary successes of deep learning in object recognition. However, recognizing objects of novel classes with limited supervision information provided, i.e., Novel Object Recognition (NOR), remains a challenging task. We identify in this paper two key factors for the success of NOR that previous approaches fail to simultaneously guarantee. The first is producing discriminative feature representations for images of novel classes, and the second is generating a flexible classifier readily adapted to novel classes provided with limited supervision signals. To secure both key factors, we propose a framework which decouples a deep classification model into a feature extraction module and a classification module. We learn the former to ensure feature discriminability with a standard multi-class classification task by fully utilizing the competing information among all classes within a training set, and learn the latter to secure adaptability by training a meta-learner network which generates classifier weights whenever provided with minimal supervision information of target classes. Extensive experiments on common benchmark datasets in the settings of both zero-shot and few-shot learning demonstrate our method achieves state-of-the-art performance.

Rethinking Zero-Shot Learning: A Conditional Visual Classification Perspective

Zero-shot learning (ZSL) aims to recognize instances of unseen classes solely based on the semantic descriptions of the classes. Existing algorithms usually formulate it as a semantic-visual correspondence problem, by learning mappings from one feature space to the other. Despite being reasonable, previous approaches essentially discard the highly precious discriminative power of visual features in an implicit way, and thus produce undesirable results. We instead reformulate ZSL as a conditioned visual classification problem, i.e., classifying visual features based on the classifiers learned from the semantic descriptions. With this reformulation, we develop algorithms targeting various ZSL settings: For the conventional setting, we propose to train a deep neural network that directly generates visual feature classifiers from the semantic attributes with an episode-based training scheme; For the generalized setting, we concatenate the learned highly discriminative classifiers for seen classes and the generated classifiers for unseen classes to classify visual features of all classes; For the transductive setting, we exploit unlabeled data to effectively calibrate the classifier generator using a novel learning-without-forgetting self-training mechanism and guide the process by a robust generalized cross-entropy loss. Extensive experiments show that our proposed algorithms significantly outperform state-of-the-art methods by large margins on most benchmark datasets in all the ZSL settings.