Martin Min NEC Labs America

Martin Renqiang Min

Department Head

Machine Learning

Posts

A Deep Generative Model for Molecule Optimization via One Fragment Modification

Molecule optimization is a critical step in drug development to improve the desired properties of drug candidates through chemical modification. We have developed a novel deep generative model, Modof, over molecular graphs for molecule optimization. Modof modifies a given molecule through the prediction of a single site of disconnection at the molecule and the removal and/or addition of fragments at that site. A pipeline of multiple, identical Modof models is implemented into Modof-pipe to modify an input molecule at multiple disconnection sites. Here we show that Modof-pipe is able to retain major molecular scaffolds, allow controls over intermediate optimization steps and better constrain molecule similarities. Modof-pipe outperforms the state-of-the-art methods on benchmark datasets. Without molecular similarity constraints, Modof-pipe achieves 81.2% improvement in the octanol–water partition coefficient, penalized by synthetic accessibility and ring size, and 51.2%, 25.6% and 9.2% improvement if the optimized molecules are at least 0.2, 0.4 and 0.6 similar to those before optimization, respectively. Modof-pipe is further enhanced into Modof-pipem to allow modification of one molecule to multiple optimized ones. Modof-pipem achieves additional performance improvement, at least 17.8% better than Modof-pipe.

Retrieval, Analogy, and Composition: A framework for Compositional Generalization in Image Captioning

Image captioning systems are expected to have the ability to combine individual concepts when describing scenes with concept combinations that are not observed during training. In spite of significant progress in image captioning with the help of the autoregressive generation framework, current approaches fail to generalize well to novel concept combinations. We propose a new framework that revolves around probing several similar image caption training instances (retrieval), performing analogical reasoning over relevant entities in retrieved prototypes (analogy), and enhancing the generation process with reasoning outcomes (composition). Our method augments the generation model by referring to the neighboring instances in the training set to produce novel concept combinations in generated captions. We perform experiments on the widely used image captioning benchmarks. The proposed models achieve substantial improvement over the compared baselines on both composition-related evaluation metrics and conventional image captioning metrics.

Towards Robustness of Deep Neural Networks via Networks via Regularization

Recent studies have demonstrated the vulnerability of deep neural networks against adversarial examples. In-spired by the observation that adversarial examples often lie outside the natural image data manifold and the intrinsic dimension of image data is much smaller than its pixel space dimension, we propose to embed high-dimensional input images into a low-dimensional space and apply regularization on the embedding space to push the adversarial examples back to the manifold. The proposed framework is called Embedding Regularized Classifier (ER-Classifier), which improves the adversarial robustness of the classifier through embedding regularization. Besides improving classification accuracy against adversarial examples, the framework can be combined with detection methods to detect adversarial examples. Experimental results on several benchmark datasets show that, our proposed framework achieves good performance against strong adversarial at-tack methods.

Dual Projection Generative Adversarial Networks for Conditional Image Generation

Conditional Generative Adversarial Networks (cGANs) extend the standard unconditional GAN framework to learning joint data-label distributions from samples, and have been established as powerful generative models capable of generating high-fidelity imagery. A challenge of training such a model lies in properly infusing class information into its generator and discriminator. For the discriminator, class conditioning can be achieved by either (1) directly incorporating labels as input or (2) involving labels in an auxiliary classification loss. In this paper, we show that the former directly aligns the class-conditioned fake-and-real data distributions P (image|class) (data matching), while the latter aligns data-conditioned class distributions P (class|image) (label matching). Although class separability does not directly translate to sample quality and becomes a burden if classification itself is intrinsically difficult, the discriminator cannot provide useful guidance for the generator if features of distinct classes are mapped to the same point and thus become inseparable. Motivated by this intuition, we propose a Dual Projection GAN (P2GAN) model that learns to balance between data matching and label matching. We then propose an improved cGAN model with Auxiliary Classification that directly aligns the fake and real conditionals P (class|image) by minimizing their f-divergence. Experiments on a synthetic Mixture of Gaussian (MoG) dataset and a variety of real-world datasets including CIFAR100, ImageNet, and VGGFace2 demonstrate the efficacy of our proposed models.

DECODE: A Deep-learning Framework for Condensing Enhancers and Refining Boundaries with Large-scale Functional Assays

MotivationMapping distal regulatory elements, such as enhancers, is a cornerstone for elucidating how genetic variations may influence diseases. Previous enhancer-prediction methods have used either unsupervised approaches or supervised methods with limited training data. Moreover, past approaches have implemented enhancer discovery as a binary classification problem without accurate boundary detection, producing low-resolution annotations with superfluous regions and reducing the statistical power for downstream analyses (e.g. causal variant mapping and functional validations). Here, we addressed these challenges via a two-step model called Deep-learning framework for Condensing enhancers and refining boundaries with large-scale functional assays (DECODE). First, we employed direct enhancer-activity readouts from novel functional characterization assays, such as STARR-seq, to train a deep neural network for accurate cell-type-specific enhancer prediction. Second, to improve the annotation resolution, we implemented a weakly supervised object detection framework for enhancer localization with precise boundary detection (to a 10 bp resolution) using Gradient-weighted Class Activation Mapping.ResultsOur DECODE binary classifier outperformed a state-of-the-art enhancer prediction method by 24% in transgenic mouse validation. Furthermore, the object detection framework can condense enhancer annotations to only 13% of their original size, and these compact annotations have significantly higher conservation scores and genome-wide association study variant enrichments than the original predictions. Overall, DECODE is an effective tool for enhancer classification and precise localization.

Hopper: Multi-hop Transformer for Spatio-Temporal Reasoning

This paper considers the problem of spatiotemporal object-centric reasoning in videos. Central to our approach is the notion of object permanence, i.e., the ability to reason about the location of objects as they move through the video while being occluded, contained or carried by other objects. Existing deep learning based approaches often suffer from spatiotemporal biases when applied to video reasoning problems. We propose Hopper, which uses a Multi-hop Transformer for reasoning object permanence in videos. Given a video and a localization query, Hopper reasons over image and object tracks to automatically hop over critical frames in an iterative fashion to predict the final position of the object of interest. We demonstrate the effectiveness of using a contrastive loss to reduce spatiotemporal biases. We evaluate over CATER dataset and find that Hopper achieves 73.2% Top-1 accuracy using just 1 FPS by hopping through just a few critical frames. We also demonstrate Hopper can perform long-term reasoning by building a CATER-h dataset that requires multi-step reasoning to localize objects of interest correctly.

Disentangled Recurrent Wasserstein Auto-Encoder

Learning disentangled representations leads to interpretable models and facilitates data generation with style transfer, which has been extensively studied on static data such as images in an unsupervised learning framework. However, only a few works have explored unsupervised disentangled sequential representation learning due to challenges of generating sequential data. In this paper, we propose recurrent Wasserstein Autoencoder (R-WAE), a new framework for generative modeling of sequential data. R-WAE disentangles the representation of an input sequence into static and dynamic factors (i.e., time-invariant and time-varying parts). Our theoretical analysis shows that, R-WAE minimizes an upper bound of a penalized form of the Wasserstein distance between model distribution and sequential data distribution, and simultaneously maximizes the mutual information between input data and different disentangled latent factors, respectively. This is superior to (recurrent) VAE which does not explicitly enforce mutual information maximization between input data and disentangled latent representations. When the number of actions in sequential data is available as weak supervision information, R-WAE is extended to learn a categorical latent representation of actions to improve its disentanglement. Experiments on a variety of datasets show that our models outperform other baselines with the same settings in terms of disentanglement and unconditional video generation both quantitatively and qualitatively.

Ranking-based Convolutional Neural Network Models for Peptide-MHC Binding Prediction

T-cell receptors can recognize foreign peptides bound to major histocompatibility complex (MHC) class-I proteins, and thus trigger the adaptive immune response. Therefore, identifying peptides that can bind to MHC class-I molecules plays a vital role in the design of peptide vaccines. Many computational methods, for example, the state-of-the-art allele-specific method MHCflurry, have been developed to predict the binding affinities between peptides and MHC molecules. In this manuscript, we develop two allele-specific Convolutional Neural Network-based methods named ConvM and SpConvM to tackle the binding prediction problem. Specifically, we formulate the problem as to optimize the rankings of peptide-MHC bindings via ranking-based learning objectives. Such optimization is more robust and tolerant to the measurement inaccuracy of binding affinities, and therefore enables more accurate prioritization of binding peptides. In addition, we develop a new position encoding method in ConvM and SpConvM to better identify the most important amino acids for the binding events. We conduct a comprehensive set of experiments using the latest Immune Epitope Database (IEDB) datasets. Our experimental results demonstrate that our models significantly outperform the state-of-the-art methods including MHCflurry with an average percentage improvement of 6.70% on AUC and 17.10% on ROC5 across 128 alleles.

Model-Based Autoencoders for Imputing Discrete single-cell RNA-seq Data

Deep neural networks have been widely applied for missing data imputation. However, most existing studies have been focused on imputing continuous data, while discrete data imputation is under-explored. Discrete data is common in real world, especially in research areas of bioinformatics, genetics, and biochemistry. In particular, large amounts of recent genomic data are discrete count data generated from single-cell RNA sequencing (scRNA-seq) technology. Most scRNA-seq studies produce a discrete matrix with prevailing ‘false’ zero count observations (missing values). To make downstream analyses more effective, imputation, which recovers the missing values, is often conducted as the first step in pre-processing scRNA-seq data. In this paper, we propose a novel Zero-Inflated Negative Binomial (ZINB) model-based autoencoder for imputing discrete scRNA-seq data. The novelties of our method are twofold. First, in addition to optimizing the ZINB likelihood, we propose to explicitly model the dropout events that cause missing values by using the Gumbel-Softmax distribution. Second, the zero-inflated reconstruction is further optimized with respect to the raw count matrix. Extensive experiments on simulation datasets demonstrate that the zero-inflated reconstruction significantly improves imputation accuracy. Real data experiments show that the proposed imputation can enhance separating different cell types and improve the accuracy of differential expression analysis.

Improving Disentangled Text Representation Learning with Information Theoretical Guidance

Learning disentangled representations of natural language is essential for many NLP tasks, e.g., conditional text generation, style transfer, personalized dialogue systems, etc. Similar problems have been studied extensively for other forms of data, such as images and videos. However, the discrete nature of natural language makes the disentangling of textual representations more challenging (e.g., the manipulation over the data space cannot be easily achieved). Inspired by information theory, we propose a novel method that effectively manifests disentangled representations of text, without any supervision on semantics. A new mutual information upper bound is derived and leveraged to measure dependence between style and content. By minimizing this upper bound, the proposed method induces style and content embeddings into two independent low-dimensional spaces. Experiments on both conditional text generation and text-style transfer demonstrate the high quality of our disentangled representation in terms of content and style preservation.