Posts

DISC: Dynamic Decomposition Improves LLM Inference Scaling (SSI-FM)

Inference scaling methods often rely on decomposing problems into steps, followed by sampling and selecting the best next steps. However, these steps and their sizes are typically fixed or depend on domain knowledge. We propose dynamic decomposition, a method that adaptively and automatically breaks down solution and reasoning traces into manageable steps during inference. By allocating compute more effectively, particularly by subdividing challenging steps and sampling them more frequently, dynamic decomposition significantly enhances inference efficiency. Experiments on benchmarks such as APPS, MATH, and LiveCodeBench demonstrate that dynamic decomposition outperforms static approaches, including token-level, sentence-level, and single-step decompositions. These findings highlight the potential of dynamic decomposition to improve a wide range of inference scaling techniques.

DISC: Dynamic Decomposition Improves LLM Inference Scaling (DL4C)

Inference scaling methods often rely on decomposing problems into steps, followed by sampling and selecting the best next steps. However, these steps and their sizes are typically fixed or depend on domain knowledge. We propose dynamic decomposition, a method that adaptively and automatically breaks down solution and reasoning traces into manageable steps during inference. By allocating compute more effectively—particularly by subdividing challenging steps and sampling them more frequently—dynamic decomposition significantly enhances inference efficiency. Experiments on benchmarks such as APPS, MATH, and LiveCodeBench demonstrate that dynamic decomposition outperforms static approaches, including token-level, sentence-level, and single-step decompositions. These findings highlight the potential of dynamic decomposition to improve a wide range of inference scaling techniques.

On Synthesizing Data for Context Attribution in Question Answering

Question Answering (QA) accounts for a significant portion of LLM usage “in the wild”. However, LLMs sometimes produce false or misleading responses, also known as “hallucinations”. Therefore, grounding the generated answers in contextually provided information — i.e., providing evidence for the generated text — is paramount for LLMs’ trustworthiness. Providing this information is the task of context attribution. In this paper, we systematically study LLM-based approaches for this task, namely we investigate (i) zero-shot inference, (ii) LLM ensembling, and (iii) fine-tuning of small LMs on synthetic data generated by larger LLMs. Our key contribution is SynQA: a novel generative strategy for synthesizing context attribution data. Given selected context sentences, an LLM generates QA pairs that are supported by these sentences. This leverages LLMs’ natural strengths in text generation while ensuring clear attribution paths in the synthetic training data. We show that the attribution data synthesized via SynQA is highly effective for fine-tuning small LMs for context attribution in different QA tasks and domains. Finally, with a user study, we validate the usefulness of small LMs (fine-tuned on synthetic data from SynQA) in context attribution for QA.