Murugan Sankaradas NEC Labs America

Murugan Sankaradas

Senior Researcher

Integrated Systems

Posts

CamTuner: Reinforcement Learning based System for Camera Parameter Tuning to enhance Analytics

Video analytics systems critically rely on video cameras, which capture high quality video frames, to achieve high analytics accuracy. Although modern video cameras often expose tens of configurable parameter settings that can be set by end users, deployment of surveillance cameras today often uses a fixed set of parameter settings because the end users lack the skill or understanding to reconfigure these parameters. In this paper, we first show that in a typical surveillance camera deployment, environmental condition changes can significantly affect the accuracy of analytics units such as person detection, face detection and face recognition, and how such adverse impact can be mitigated by dynamically adjusting camera settings. We then propose CAMTUNER, a framework that can be easily applied to an existing video analytics pipeline (VAP) to enable automatic and dynamic adaptation of complex camera settings to changing environmental conditions, and autonomously optimize the accuracy of analytics units (AUs) in the VAP. CAMTUNER is based on SARSA reinforcement learning (RL) and it incorporates two novel components: a light weight analytics quality estimator and a virtual camera. CAMTUNER is implemented in a system with AXIS surveillance cameras and several VAPs (with various AUs) that processed day long customer videos captured at airport entrances. Our evaluations show that CAMTUNER can adapt quickly to changing environments. We compared CAMTUNER with two alternative approaches where either static camera settings were used, or a strawman approach where camera settings were manually changed every hour (based on human perception of quality). We observed that for the face detection and person detection AUs, CAMTUNER is able to achieve up to 13.8% and 9.2% higher accuracy, respectively, compared to the best of the two approaches (average improvement of 8% for both AUs).

AppSlice: A system for application-centric design of 5G and edge computing applications

Applications that use edge computing and 5G to improve response times consume both compute and network resources. However, 5G networks manage only network resources without considering the application’s compute requirements, and container orchestration frameworks manage only compute resources without considering the application’s network requirements. We observe that there is a complex coupling between an application’s compute and network usage, which can be leveraged to improve application performance and resource utilization. We propose a new, declarative abstraction called app slice that jointly considers the application’s compute and network requirements. This abstraction leverages container management systems to manage edge computing resources, and 5G network stacks to manage network resources, while the joint consideration of coupling between compute and network usage is explicitly managed by a new runtime system, which delivers the declarative semantics of the app slice. The runtime system also jointly manages the edge compute and network resource usage automatically across different edge computing environments and 5G networks by using two adaptive algorithms. We implement a complex, real-world, real-time monitoring application using the proposed app slice abstraction, and demonstrate on a private 5G/LTE testbed that the proposed runtime system significantly improves the application performance and resource usage when compared with the case where the coupling between the compute and network resource usage is ignored.

DataX: A system for Data eXchange and transformation of streams

The exponential growth in smart sensors and rapid progress in 5G networks is creating a world awash with data streams. However, a key barrier to building performant multi-sensor, distributed stream processing applications is high programming complexity. We propose DataX, a novel platform that improves programmer productivity by enabling easy exchange, transformations, and fusion of data streams. DataX abstraction simplifies the application’s specification and exposes parallelism and dependencies among the application functions (microservices). DataX runtime automatically sets up appropriate data communication mechanisms, enables effortless reuse of microservices and data streams across applications, and leverages serverless computing to transform, fuse, and auto-scale microservices. DataX makes it easy to write, deploy and reliably operate distributed applications at scale. Synthesizing these capabilities into a single platform is substantially more transformative than any available stream processing system.

F3S: Free Flow Fever Screening

Identification of people with elevated body temperature can reduce or dramatically slow down the spread of infectious diseases like COVID-19. We present a novel fever-screening system, F 3 S, that uses edge machine learning techniques to accurately measure core body temperatures of multiple individuals in a free-flow setting. F 3 S performs real-time sensor fusion of visual camera with thermal camera data streams to detect elevated body temperature, and it has several unique features: (a) visual and thermal streams represent very different modalities, and we dynamically associate semantically-equivalent regions across visual and thermal frames by using a new, dynamic alignment technique that analyzes content and context in real-time, (b) we track people through occlusions, identify the eye (inner canthus), forehead, face and head regions where possible, and provide an accurate temperature reading by using a prioritized refinement algorithm, and (c) we robustly detect elevated body temperature even in the presence of personal protective equipment like masks, or sunglasses or hats, all of which can be affected by hot weather and lead to spurious temperature readings. F 3 S has been deployed at over a dozen large commercial establishments, providing contact-less, free-flow, real-time fever screening for thousands of employees and customers in indoors and outdoor settings.