NEC Corporation is a global leader in IT and network technologies, providing advanced solutions in AI, biometrics, smart cities, and communications. It drives innovation for social value creation and infrastructure resilience. As part of the broader NEC family, NECLA frequently collaborates with NEC Corporation on next-generation networking, AI, and secure computing systems. Our joint efforts span fundamental research to real-world deployments, including innovations in optical networks, data science platforms, and trusted AI frameworks. Please read about our latest news and collaborative publications with NEC Corporation.

Posts

GFF-Agnostic Black Box Gain Model for non-Flat Input Spectrum

We present a simple and accurate semi-analytical model predicting the gain of a single-stage erbium-doped fiber amplifier (EDFA) embedded with an unknown gain flattening filter (GFF). Characteristic wavelength-dependent gain coefficients and their scaling laws are extracted with a limited set of simple flat input spectrum measurements at variable temperatures and pump powers. Based on a black box approach, the proposed model provides a precise gain profile estimation of GFF-embedded EDFA for non-flat input spectra in variable temperature and pump power conditions. The accuracy of the presented methodology is validated on an extensive experimental dataset and compared with state-of-the-art gain models based on semi-analytic and solutions.

Phase-noise Tolerant Per-span Phase and Polarization Sensing

Subsea cables include a supervisory system that monitors the health of the amplifier pumps and fiber loss on per span basis. In some of the cables, the monitoring is achieved optically and passively using high-loss loop back paths and wavelength selective reflectors. By sending monitoring pulses through the supervisory channel and comparing the phases and polarizations of the returning pulses reflected by consecutive reflectors, dynamic disturbances affecting individual spans can be monitored on a per span basis. Such per-span phase monitoring techniques require high phase coherence compared to DAS systems since the spans are 10s of kms long compared to typical DAS resolution of meters. A time-frequency spread technique was demonstrated to limit the coherence length requirement, however the limits of its effectiveness was not quantified. In this paper we present a detailed analysis of the trade-off between implementation complexity and the phase noise tolerance for given span length by lab experiments.

Optical Flow Processing for Chirp-Pulse Coherent OTDR

We propose a novel optical flow processing technique for distributed temperature and strain sensing with the chirped-pulse coherent OTDR. Unlike conventional 1-dimensional cross-correlation methods, the technique treats the 2-dimensional waterfall data as sequential video frames, estimating local shifts through optical flow. The weighted least square approach with adaptive window size enables pixel-level optical flow calculation, providing accurate local shifts via accumulative tracks with enhanced spatial resolution. Preliminary experimental results over 20km fiber demonstrate its effectiveness for dynamic temperature and strain sensing, addressing limitations of traditional methods and improving sensing capabilities.

DISC: Dynamic Decomposition Improves LLM Inference Scaling (SSI-FM)

Inference scaling methods often rely on decomposing problems into steps, followed by sampling and selecting the best next steps. However, these steps and their sizes are typically fixed or depend on domain knowledge. We propose dynamic decomposition, a method that adaptively and automatically breaks down solution and reasoning traces into manageable steps during inference. By allocating compute more effectively, particularly by subdividing challenging steps and sampling them more frequently, dynamic decomposition significantly enhances inference efficiency. Experiments on benchmarks such as APPS, MATH, and LiveCodeBench demonstrate that dynamic decomposition outperforms static approaches, including token-level, sentence-level, and single-step decompositions. These findings highlight the potential of dynamic decomposition to improve a wide range of inference scaling techniques.

DISC: Dynamic Decomposition Improves LLM Inference Scaling (DL4C)

Inference scaling methods often rely on decomposing problems into steps, followed by sampling and selecting the best next steps. However, these steps and their sizes are typically fixed or depend on domain knowledge. We propose dynamic decomposition, a method that adaptively and automatically breaks down solution and reasoning traces into manageable steps during inference. By allocating compute more effectively—particularly by subdividing challenging steps and sampling them more frequently—dynamic decomposition significantly enhances inference efficiency. Experiments on benchmarks such as APPS, MATH, and LiveCodeBench demonstrate that dynamic decomposition outperforms static approaches, including token-level, sentence-level, and single-step decompositions. These findings highlight the potential of dynamic decomposition to improve a wide range of inference scaling techniques.

1.2 Tb/s/l Real Time Mode Division Multiplexing Free Space Optical Communication with Commercial 400G Open and Disaggregated Transponders

We experimentally demonstrate real time mode division multiplexing free space optical communication with commercial 400G open and disaggregated transponders. As proof of concept,using HG00, HG10, and HG01 modes, we transmit 1.2 Tb/s/l (3´1l´400Gb/s) error free.

400-Gb/s mode division multiplexing-based bidirectional free space optical communication in real-time with commercial transponders

In this work, for the first time, we experimentally demonstrate mode division multiplexing-based bidirectional free space optical communication in real-time using commercial transponders. As proof of concept, via bidirectional pairs of Hermite-Gaussian modes (HG00, HG10, and HG01), using a Telecom Infra Project Phoenix compliant commercial 400G transponder, 400-Gb/s data signals (56-Gbaud, DP-16QAM) are bidirectionally transmitted error free, i.e., with less than 1e-2 pre-FEC BERs, over approximately 1-m of free space

Data-driven Modelling of EDFAs by Neural Networks

Dependence of EDFA gain shape on input power and input spectrum shape is modelled using a simple neural network-based architecture for amplifiers with different gains and output powers. The model can predict the gain within ±0.1 dB. Even though the model has good success predicting the performance of the particular EDFA it is trained with, it is not as successful when used to predict a different EDFA, or even the same EDFA with a different pump power. However, retraining the model with a small amount of supplementary data from a second EDFA makes the model able to predict the performance of the second EDFA with little loss in performance.

DAS over 1,007-km Hybrid Link with 10-Tb/s DP-16QAM Co-propagation using Frequency-Diverse Chirped Pulses

We report the first distributed acoustic sensing (DAS) experiment with over >1,000 km reach on a hybrid link comprising of a mixture of field and lab fibers with bi-directional inline Raman amplification after each span. We used 20× frequency-diversity chirped-pulses for the probe signal,and recovered the Rayleigh backscatter using a coherent receiver with correlation detection and diversity combining. A measurand resolution of ∼100 pϵ/√ Hz at a gauge length of 20 meters achieved in the offline experiment. We also demonstrate the first real-time FPGA implementation of chirped-pulse DAS without frequency diversity over a range of 210 km.

DAS over 1,007-km Hybrid Link with 10-Tb/s DP-16QAM Co-propagation using Frequency-Diverse Chirped Pulses (OFC)

We report the first distributed acoustic sensing (DAS) results over>1,000 km on a field-lab hybrid link using chirped-pulses with correlation detection and 20× frequency-diversity, achieving a sensitivity of 100 pa/√Hz at 20-meters spatial resolution.