Optical Networking and SensingRead our Optical Networking and Sensing publications from our team of researchers. We are leading world-class research into the next generation of optical networks and sensing systems that will power ICT-based social solutions for years. We advance globally acknowledged innovation by engaging in visionary theoretical research, pioneering experiments, and leading technology field trials. Our work not only foresees the future but also transforms it into today’s reality.

Posts

Simultaneous Optical Fiber Sensing and Mobile Front-Haul Access over a Passive Optical Network

We demonstrate a passive optical network (PON) that employs reflective semiconductor optical amplifiers (RSOAs) at optical network units (ONUs) to allow simultaneous data transmission with distributed fiber-optic sensing (DFOS) on individual distribution fibers.

First Field Trial of Distributed Fiber Optical Sensing and High-Speed Communication Over an Operational Telecom Network

To the best of our knowledge, we present the first field trial of distributed fiber optical sensing (DFOS) and high-speed communication, comprising a coexisting system, over an operation telecom network. Using probabilistic-shaped (PS) DP-144QAM, a 36.8 Tb/s with an 8.28-b/s/Hz spectral efficiency (SE) (48-Gbaud channels, 50-GHz channel spacing) was achieved. Employing DFOS technology, road traffic, i.e., vehicle speed and vehicle density, were sensed with 98.5% and 94.5% accuracies, respectively, as compared to video analytics. Additionally, road conditions, i.e., roughness level was sensed with >85% accuracy via a machine learning based classifier.

Wavelength Modulation Spectroscopy Enhanced by Machine Learning for Early Fire Detection

We proposed and demonstrated a new machine learning algorithm for wavelength modulation spectroscopy to enhance the accuracy of fire detection. The result shows more than 8% of accuracy improvement by analyzing CO/CO 2 2f signals.

Model transfer of QoT prediction in optical networks based on artificial neural networks

An artificial neural network (ANN) based transfer learning model is built for quality of transmission (QoT) prediction in optical systems feasible with different modulation formats. Knowledge learned from one optical system can be transferred to a similar optical system by adjusting weights in ANN hidden layers with a few additional training samples, where highly related information from both systems is integrated and redundant information is discarded. Homogeneous and heterogeneous ANN structures are implemented to achieve accurate Q-factor-based QoT prediction with low root-mean-square error. The transfer learning accuracy under different modulation formats, transmission distances, and fiber types is evaluated. Using transfer learning, the number of retraining samples is reduced from 1000 to as low as 20, and the training time is reduced by up to four times.

A Study on Traffic Flow Monitoring Using Optical Fiber Sensor Technology

Traffic conditions of the highway, Ya traffic volume meter CCTV Because it is observed in the spot, such as the discovery of traffic disturbances which deviates from the observation spot it may be delayed. The traffic flow has a problem from the point observations data indirectly order to be estimated, the capture accuracy of trending and regional circumstances change in time series. Therefore, we focused on the optical fiber sensing technology that utilizes the existing light off Aibainfura highway, actually measuring the travel vibration of the vehicle from the infrastructure as a continuous line, overhead grasp the traffic flow from the traveling locus We are working to. This time, tried traffic flow observation and the estimates of the average speed in the Tokyo, Nagoya and New Tomei Expressway. A result, the demonstration zone 45km in a traffic flow observable real time, succeeded in average speed calculation equivalent to the existing traffic meter, this technology has shown promise as a bird’s-eye technique wide and real-time traffic flow.

Size and Alignment Independent Classification of the High-order Spatial Modes of a Light Beam Using a Convolutional Neural Network

The higher-order spatial modes of a light beam are receiving significant interest. They can be used to further increase the data speeds of high speed optical communication, and for novel optical sensing modalities. As such, the classification of higher-order spatial modes is ubiquitous. Canonical classification methods typically require the use of unconventional optical devices. However, in addition to having prohibitive cost, complexity, and efficacy, such methods are dependent on the light beam’s size and alignment. In this work, a novel method to classify higher-order spatial modes is presented, where a convolutional neural network is applied to images of higher-order spatial modes that are taken with a conventional camera. In contrast to previous methods, by training the convolutional neural network with higher-order spatial modes of various alignments and sizes, this method is not dependent on the light beam’s size and alignment. As a proof of principle, images of 4 Hermite-Gaussian modes (HG00, HG01, HG10, and HG11) are numerically calculated via known solutions to the electromagnetic wave equation, and used to synthesize training examples. It is shown that as compared to training the convolutional neural network with training examples that have the same sizes and alignments, a?~2×?increase in accuracy can be achieved.

Field and lab experimental demonstration of nonlinear impairment compensation using neural networks

Fiber nonlinearity is one of the major limitations to the achievable capacity in long distance fiber optic transmission systems. Nonlinear impairments are determined by the signal pattern and the transmission system parameters. Deterministic algorithms based on approximating the nonlinear Schrodinger equation through digital back propagation, or a single step approach based on perturbation methods have been demonstrated, however, their implementation demands excessive signal processing resources, and accurate knowledge of the transmission system. A completely different approach uses machine learning algorithms to learn from the received data itself to figure out the nonlinear impairment. In this work, a single-step, system agnostic nonlinearity compensation algorithm based on a neural network is proposed to pre-distort symbols at transmitter side to demonstrate ~0.6?dB Q improvement after 2800?km standard single-mode fiber transmission using 32 Gbaud signal. Without prior knowledge of the transmission system, the neural network tensor weights are constructed from training data thanks to the intra-channel cross-phase modulation and intra-channel four-wave mixing triplets used as input features.

Neural-Network-Based G-OSNR Estimation of Probabilistic-Shaped 144QAM Channels in DWDM Metro Network Field Trial

A two-stage neural network model is applied on captured PS-144QAM raw data to estimate channel G-OSNR in a metro network field trial. We obtained 0.27dB RMSE with first-stage CNN classifier and second-stage ANN regressions.

Coupled-Core Fiber Design For Enhancing Nonlinearity Tolerance

Fiber nonlinearity is a major limitation on the achievable maximum capacity per fiber core. Digital signal processing (DSP) can be used directly to compensate nonlinear impairments, however with limited effectiveness. It is well known that fibers with higher chromatic dispersion (CD) reduce nonlinear impairments, and CD can be taken care of with DSP. Since, maximum CD is limited by material dispersion of the fiber we propose using strongly-coupled multi-core fibers with large group delay (GD) between the cores. Nonlinear mitigation is achieved through strong mode coupling, and group delay between the cores which suppresses four-wave mixing interaction by inducing large phase-mismatch, albeit stochastic in nature. Through simulations we determine the threshold GD required for noticeable nonlinearity suppression depends on the fiber CD. In particular, for dispersion-uncompensated links a large GD of the order of 1ns per 1000km is required to improve optimum Q by 1 dB. Furthermore, beyond this threshold, larger GD results in larger suppression without any signs of saturation.

Fiber Nonlinearity Compensation by Neural Networks

Neuron network (NN) is proposed to work together with perturbation-based nonlinearity compensation (NLC) algorithm by feeding with intra-channel cross-phase modulation (IXPM) and intra-channel four-wave mixing (IFWM) triplets. Without prior knowledge of the transmission link and signal pulse shaping/baudrate, the optimum NN architecture and its tensor weights are completely constructed from a data-driven approach by exploring the training datasets. After trimming down the unnecessary input tensors based on their weights, its complexity is further reduced by applying the trained NN model at the transmitter side thanks to the limited alphabet size of the modulation formats. The performance advantage of Tx-side NN-NLC is experimentally demonstrated using both single-channel and WDM-channel 32Gbaud dual-polarization 16QAM over 2800km transmission