Optical Networking and SensingRead our Optical Networking and Sensing publications from our team of researchers. We are leading world-class research into the next generation of optical networks and sensing systems that will power ICT-based social solutions for years. We advance globally acknowledged innovation by engaging in visionary theoretical research, pioneering experiments, and leading technology field trials. Our work not only foresees the future but also transforms it into today’s reality.

Posts

Multi-terminal Germanium Photodetector in a Commercial Silicon Photonics Platform

We report responsivity measurements of a multiterminal photodetection device in a commercial silicon photonics platform. The ratio of measured responsivities is found to track the relative terminal lengths. This can serve as a highly compact optoelectronic tap/diplexer. More importantly, complex biasing conditions of similar devices are promising for onchip reprogrammable opto-electronic responses in conventional silicon photonic platforms, with applications in reprogrammable photonics and neuromorphic photonics.

GNPy Experimental Validation in a C+L Multiband Optical Multiplex Section

The GNPy quality-of-transmission estimator has undergone improvements and rigorous experimental validation in a C+L multiband transmission scenario. This includes the incorporation of a disaggregated generalized Gaussian noise model, along with advanced modeling of amplifiers and transceivers. The recently proposed implementation demonstrates notable enhancements, offering highly accurate GSNR predictions on commercial C+L-band equipment while significantly reducing computation time.

Optical Amplified Line Self-Healing Using GNPy as a Service by the SDN Control

A control architecture for a partially disaggregated optical network is proposed using a GNPy-based digital twin for QoT estimation. The proposed implementation enables soft failure mitigation by autonomously adjusting the amplifier working points.

Seeing the Vibration from Fiber-Optic Cables: Rain Intensity Monitoring using Deep Frequency Filtering

The various sensing technologies such as cameras LiDAR radar and satellites with advanced machine learning models offers a comprehensive approach to environmental perception and understanding. This paper introduces an innovative Distributed Fiber Optic Sensing (DFOS) technology utilizing the existing telecommunication infrastructure networks for rain intensity monitoring. DFOS enables a novel way to monitor weather condition and environmental changes provides real-time continuous and precise measurements over large areas and delivers comprehensive insights beyond the visible spectrum. We use rain intensity as an example to demonstrate the sensing capabilities of DFOS system. To enhance the rain sensing performance we introduce a Deep Phase-Magnitude Network (DFMN) divide the raw sensing data into phase and magnitude component allowing targeted feature learning on each component independently. Furthermore we propose a Phase Frequency learnable filter (PFLF) for the phase component filtering and conduct standard convolution layers on the magnitude component leveraging the inherent physical properties of optical fiber sensing. We formulate the phase-magnitude channel into a parallel network and subsequently fuse the features for a comprehensive analysis in the end. Experimental results on the collected fiber sensing data show that the proposed method performs favorably against the state-of-the-art approaches.

Deep Learning-based Intrusion Detection and Impulsive Event Classification for Distributed Acoustic Sensing across Telecom Networks

We introduce two pioneering applications leveraging Distributed Fiber Optic Sensing (DFOS) and Machine Learning (ML) technologies. These innovations offer substantial benefits forfortifying telecom infrastructures and public safety. By harnessing existing telecom cables, our solutions excel in perimeter intrusion detection via buried cables and impulsive event classification through aerial cables. To achieve comprehensive intrusion detection, we introduce a label encoding strategy for multitask learning and evaluate the generalization performance of the proposed approach across various domain shifts. For accurate recognition of impulsive acoustic events, we compare several standard choices of representations for raw waveform data and neural network architectures, including convolutional neural networks (ConvNets) and vision transformers (ViT).We also study the effectiveness of the built-in inductive biases under both high- and low-fidelity sensing conditions and varying amounts of labeled training data. All computations are executed locally through edge computing, ensuring real-time detection capabilities. Furthermore, our proposed system seamlessly integrates with cameras for video analytics, significantly enhancing overall situation awareness of the surrounding environment.

Deep Learning Gain and Tilt Adaptive Digital Twin Modeling of Optical Line Systems for Accurate OSNR Predictions

We propose a deep learning algorithm trained on varied spectral loads and EDFA working points to generate a digital twin of an optical line system able to optimize line control and to enhance OSNR predictions.

Local and Global Optimization Methods for Optical Line Control Based on Quality of Transmission

The ever-increasing demand for data traffic in recent decades has pushed network operators to give importance to the aspect of infrastructure control to facilitate its scalability and maximize its capacity. A generic lightpath (LP) is deployed starting from a traffic request between a given pair of nodes in a network. LPs are operated in the network based on an estimate of the quality of transmission (QoT), which is derived from the physical layer characteristics of a selected route. Regardless of the model used to estimate QoT, it is necessary to calibrate themodel to maximize its accuracy and define minimum design margins. The model calibration process depends significantly on the type of data that can be collected in the field (i.e., type of metric, resolution) and therefore on the available monitoring devices. In this work, a systematic evaluation of the QoT estimation is carried out on a multi-span erbium-doped-fiber-amplified optical line system (OLS) using in the first case only total power monitors and in the second experimentally emulating optical channel monitors (OCMs). Given the type of monitoring devices available, three different physical models are calibrated, and six optimization methods are used to define the optimal configuration of the target gain and tilt parameters of the optical amplifiers, jointly optimizing the working point of all amplifiers (global approach) or proceeding span by span (local approach). Subsequently, the OLS was set in each configuration obtained, and the generalized signal-to-noise ratio (GSNR) profile was measured at the end.

Radio-Frequency Linear Analysis and Optimization of Silicon Photonic Neural Networks

Broadband analog signal processors utilizing silicon photonics have demonstrated a significant impact in numerous application spaces, offering unprecedented bandwidths, dynamic range, and tunability. In the past decade, microwave photonic techniques have been applied to neuromorphic processing, resulting in the development of novel photonic neural network architectures. Neuromorphic photonic systems can enable machine learning capabilities at extreme bandwidths and speeds. Herein, low-quality factor microring resonators are implemented to demonstrate broadband optical weighting. In addition, silicon photonic neural network architectures are critically evaluated, simulated, and optimized from a radio-frequency performance perspective. This analysis highlights the linear front-end of the photonic neural network, the effects of linear and nonlinear loss within silicon waveguides, and the impact of electrical preamplification.

Low-rank Constrained Multichannel Signal Denoising Considering Channel-dependent Sensitivity Inspired by Self-supervised Learning for Optical Fiber Sensing

Optical fiber sensing is a technology wherein audio, vibrations, and temperature are detected using an optical fiber; especially the audio/vibrations-aware sensing is called distributed acoustic sensing (DAS). In DAS, observed data, which is comprised of multichannel data, has suffered from severe noise levels because of the optical noise or the installation methods. In conventional methods for denoising DAS data, signal-processing- or deep-neural-network (DNN)-based models have been studied. The signal-processing-based methods have the interpretability, i.e., non-black box. The DNN-based methods are good at flexibility designing network architectures and objective functions, that is, priors. However, there is no balance between the interpretability and the flexibility of priors in the DAS studies. The DNN-based methods also require a large amount of training data in general. To address the problems, we propose a DNN-structure signal-processing-based denoising method in this paper. As the priors of DAS, we employ spatial knowledge; low rank and channel-dependent sensitivity using the DNN-based structure.The result of fiber-acoustic sensing shows that the proposed method outperforms the conventional methods and the robustness to the number of the spatial ranks. Moreover, the optimized parameters of the proposed method indicate the relationship with the channel sensitivity; the interpretability.

Link Loss Analysis of Integrated Linear Weight Bank within Silicon Photonic Neural Network

Over the last decade, silicon photonic neural networks have demonstrated the possibility of photonic-enabled machine learning at the edge. These systems enable low-latency ultra-wideband classifications, channel estimations, and many other signal characterization tasks within wireless environments. While these proof-of-concept experiments have yielded promising results, poor device and architectural designs have resulted in sub-optimal bandwidth and noise performance. As a result, the application space of this technology has been limited to GHz bandwidths and high signal-to-ratio input signals. By applying a microwave photonic perspective to these systems, the authors demonstrate high-bandwidth operation while optimizing for RF performance metrics: instantaneous bandwidth, link loss, noise figure, and dynamic range. The authors explore the extended capabilities due to these improved metrics and potential architectures to continue further optimization. The authors introduce novel architectures and RF analysis for RF-optimized neuromorphic photonic hardware.