Philip Ji NEC Labs America

Philip N. Ji

Senior Researcher

Optical Networking & Sensing

Posts

Survivable Distributed Fiber Optic Sensors Placement against Single Link Failure

Survivable Distributed Fiber Optic Sensors Placement against Single Link Failure Empowered by the rapid advancement of fiber optic sensing techniques in recent years, network carriers are able to upgrade their network infrastructure beyond the basic communication services with extra sensing applications and services (e.g., monitoring traffic and road condition, leakage detection, etc.), thus evolving to a new era of Infrastructure-as-a-Sensor (IaaSr) or Network-as-a-Sensor (NaaSr). When network carriers upgrade their network infrastructures with distributed fiber optic sensing (DFOS) technique to provide IaaSr services, there will arise a critical challenge: how to provide survivable (or reliable) IaaSr services against network failures (e.g., fiber cut). In this work, for the first time, we investigate the problem of survivable DFOS placement against single link failure. More specifically, we study where to place the primary and backup sensors and how to assign the primary and backup fiber sensing routes, with the objective of minimizing the number of sensors used. We formulate the problem using Integer Linear Programming (ILP) to facilitate the optimal solution. In addition, we propose a set of efficient heuristic algorithms to solve the problem in a fast manner. In particular, the proposed Shared-one algorithm provides a cost-efficient shared protection, through a one-step global optimization of the assignment of primary and backup DFOS placement. We conduct extensive simulations to evaluate the performance of the proposed solutions. We find out that Shared-one can achieve a close-to-optimal performance, compared to the ILP optimal results, while outperforming the other heuristic solutions with an average performance improvement by at least 16%.

Field Trial of Abnormal Activity Detection and Threat Level Assessment with Fiber Optic Sensing for Telecom Infrastructure Protection

Field Trial of Abnormal Activity Detection and Threat Level Assessment with Fiber Optic Sensing for Telecom Infrastructure Protection We report the field trial results of monitoring abnormal activities near deployed cable with fiber-optic-sensing technology for cable protection. Detection and position determination of abnormal events and evaluating the threat to the cable is realized.

Field Trial of Distributed Fiber Sensor Network Using Operational Telecom Fiber Cables as Sensing Media

Field Trial of Distributed Fiber Sensor Network Using Operational Telecom Fiber Cables as Sensing Media We demonstrate fiber optic sensing systems in a distributed fiber sensor network built on existing telecom infrastructure to detect temperature, acoustic effects, vehicle traffic, etc. Measurements are also demonstrated with different network topologies and simultaneously sensing four fiber routes with one system.

Address Challenges in Placing Distributed Fiber Optic Sensors

Address Challenges in Placing Distributed Fiber Optic Sensors We are the first to investigate a novel problem, called distributed fiber optic sensor placement, in the context of Infrastructure-as-a-Sensor. We propose an ILP-based optimal solution and a close-to-optimal heuristic solution, both of which aim at minimizing the cost of sensors.

More Than Communications: Environment Monitoring Using Existing Data Center Network Infrastructure

More Than Communications: Environment Monitoring Using Existing Data Center Network Infrastructure We propose reusing existing optical cables in metropolitan networks for distributed sensing using a bidirectional, dual-band architecture where communications and sensing signals can coexist with weak interaction on the same optical fiber.

First Field Trial of Distributed Fiber Optical Sensing and High-Speed Communication Over an Operational Telecom Network

First Field Trial of Distributed Fiber Optical Sensing and High-Speed Communication Over an Operational Telecom Network To the best of our knowledge, we present the first field trial of distributed fiber optical sensing (DFOS) and high-speed communication, comprising a coexisting system, over an operation telecom network. Using probabilistic-shaped (PS) DP-144QAM, a 36.8 Tb/s with an 8.28-b/s/Hz spectral efficiency (SE) (48-Gbaud channels, 50-GHz channel spacing) was achieved. Employing DFOS technology, road traffic, i.e., vehicle speed and vehicle density, were sensed with 98.5% and 94.5% accuracies, respectively, as compared to video analytics. Additionally, road conditions, i.e., roughness level was sensed with >85% accuracy via a machine learning based classifier.

Size and Alignment Independent Classification of the High-order Spatial Modes of a Light Beam Using a Convolutional Neural Network

Size and Alignment Independent Classification of the High-order Spatial Modes of a Light Beam Using a Convolutional Neural Network The higher-order spatial modes of a light beam are receiving significant interest. They can be used to further increase the data speeds of high speed optical communication, and for novel optical sensing modalities. As such, the classification of higher-order spatial modes is ubiquitous. Canonical classification methods typically require the use of unconventional optical devices. However, in addition to having prohibitive cost, complexity, and efficacy, such methods are dependent on the light beam’s size and alignment. In this work, a novel method to classify higher-order spatial modes is presented, where a convolutional neural network is applied to images of higher-order spatial modes that are taken with a conventional camera. In contrast to previous methods, by training the convolutional neural network with higher-order spatial modes of various alignments and sizes, this method is not dependent on the light beam’s size and alignment. As a proof of principle, images of 4 Hermite-Gaussian modes (HG00, HG01, HG10, and HG11) are numerically calculated via known solutions to the electromagnetic wave equation, and used to synthesize training examples. It is shown that as compared to training the convolutional neural network with training examples that have the same sizes and alignments, a?~2×?increase in accuracy can be achieved.

First Field Trial of Sensing Vehicle Speed, Density, and Road Conditions by Using Fiber Carrying High Speed Data

First Field Trial of Sensing Vehicle Speed, Density, and Road Conditions by Using Fiber Carrying High Speed Data For the first time, we demonstrate detection of vehicle speed, density, and road conditions using deployed fiber carrying high-speed data transmission, and prove carriers’ large-scale fiber infrastructures can also be used as ubiquitous sensing networks.

Multi-parameter distributed fiber sensing with higherorder optical and acoustic modes

Multi-parameter distributed fiber sensing with higherorder optical and acoustic modes We propose a novel multi-parameter sensing technique based on a Brillouin optical time domain reflectometry in the elliptical-core few-mode fiber, using higher-order optical and acoustic modes. Multiple Brillouin peaks are observed for the backscattering of both the LP01 mode and LP11 mode. We characterize the temperature and strain coefficients for various optical–acoustic mode pairs. By selecting the proper combination of modes pairs, the performance of multi-parameter sensing can be optimized. Distributed sensing of temperature and strain is demonstrated over a 0.5-km elliptical-core few-mode fiber, with the discriminative uncertainty of 0.28°C and 5.81 ?? for temperature and strain, respectively.

Distributed Temperature and Strain Sensing Using Brillouin Optical Time Domain Reflectometry Over a Few Mode Elliptical Core Optical Fiber

Distributed Temperature and Strain Sensing Using Brillouin Optical Time Domain Reflectometry Over a Few Mode Elliptical Core Optical Fiber We propose a single-ended Brillouin-based sensor in elliptical-core few-mode optical fiber for multi-parameter measurement using spontaneous Brillouin scattering. Distributed sensing of temperature and strain is demonstrated over 0.5 km elliptical-core few-mode fiber.