Purdue University is a public research university in Indiana, known for top programs in engineering, aerospace, and data science. It supports innovation and entrepreneurship across academia and industry. NEC Labs America partners with Purdue University on federated analytics, interpretability, and privacy-preserving inference. Our joint work helps advance trusted machine learning pipelines. Please read about our latest news and collaborative publications with Purdue University.

Posts

National Intern Day at NEC Laboratories America: Celebrating the Next Generation of Innovators

On National Intern Day, NEC Laboratories America celebrates the bright minds shaping tomorrow’s technology. Each summer, interns from top universities work side-by-side with our researchers on real-world challenges in AI, cybersecurity, data science, and more. From groundbreaking research to team-building events, our interns contribute fresh ideas and bold thinking that power NEC’s innovation engine.

SimCache: Similarity Caching for Efficient VLM-based Scene Understanding

Scene understanding systems analyze visual contexts by detecting objects, their attributes, and the interactions among them to provide a holistic interpretation. Understanding a scene requires analyzing multiple salient regions within a single video frame. Recently, Vision-Language Models (VLMs) have emerged as powerful tools for scene understanding, leveraging learned world knowledge to enable deployment without specialized training or fine-tuning. However, deploying VLMs in real-time applications is challenging due to their high computational and memory requirements, which limit processing throughput. We propose SimCache, a novel software-based caching mechanism that optimizes VLM-based scene understanding systems by reducing redundant computations. SimCache stores the embedding representation of a salient region and its detected activity, enabling reuse of VLM computations for similar regions in future frames. Specifically, SimCache exploits two types of redundancy: (1) temporal locality, reusing computations for similar regions across adjacent frames, and (2) semantic locality, reusing computations for visually distinct regions that represent the same activity at different times. SimCache includes a multi-tier cache architecture with specialized cache search and refinement policies to exploit redundancy efficiently and accurately. Experiments on action recognition datasets demonstrate that SimCache improves system throughput by up to 9.4× and reduces VLM computations by up to 24.4× with minimal accuracy loss.