Samuel Schulter was a Senior Researcher in the Media Analytics department at NEC Labs America.

Posts

Domain Adaptive Semantic Segmentation using Weak Labels

We propose a novel framework for domain adaptation in semantic segmentation with image-level weak labels in the target domain. The weak labels may be obtained based on a model prediction for unsupervised domain adaptation (UDA), or from a human oracle in a new weakly-supervised domain adaptation (WDA) paradigm for semantic segmentation. Using weak labels is both practical and useful, since (i) collecting image-level target annotations is comparably cheap in WDA and incurs no cost in UDA, and (ii) it opens the opportunity for category-wise domain alignment. Our framework uses weak labels to enable the interplay between feature alignment and pseudo-labeling, improving both in the process of domain adaptation. Specifically, we develop a weak-label classification module to enforce the network to attend to certain categories, and then use such training signals to guide the proposed category-wise alignment method. In experiments, we show considerable improvements with respect to the existing state-of-the-arts in UDA and present a new benchmark in the WDA setting.

Shuffle and Attend: Video Domain Adaptation

We address the problem of domain adaptation in videos for the task of human action recognition. Inspired by image-based domain adaptation, we can perform video adaptation by aligning the features of frames or clips of source and target videos. However, equally aligning all clips is sub-optimal as not all clips are informative for the task. As the first novelty, we propose an attention mechanism which focuses on more discriminative clips and directly optimizes for video-level (cf. clip-level) alignment. As the backgrounds are often very different between source and target, the source background-corrupted model adapts poorly to target domain videos. To alleviate this, as a second novelty, we propose to use the clip order prediction as an auxiliary task. The clip order prediction loss, when combined with domain adversarial loss, encourages learning of representations which focus on the humans and objects involved in the actions, rather than the uninformative and widely differing (between source and target) backgrounds. We empirically show that both components contribute positively towards adaptation performance. We report state-of-the-art performances on two out of three challenging public benchmarks, two based on the UCF and HMDB datasets, and one on Kinetics to NEC-Drone datasets. We also support the intuitions and the results with qualitative results.

Object Detection with a Unified Label Space from Multiple Datasets

Given multiple datasets with different label spaces, the goal of this work is to train a single object detector predicting over the union of all the label spaces. The practical benefits of such an object detector are obvious and significant—application-relevant categories can be picked and merged form arbitrary existing datasets. However, naive merging of datasets is not possible in this case, due to inconsistent object annotations. Consider an object category like faces that is annotated in one dataset, but is not annotated in another dataset, although the object itself appears in the later’s images. Some categories, like face here, would thus be considered foreground in one dataset, but background in another. To address this challenge, we design a framework which works with such partial annotations, and we exploit a pseudo labeling approach that we adapt for our specific case. We propose loss functions that carefully integrate partial but correct annotations with complementary but noisy pseudo labels. Evaluation in the proposed novel setting requires full annotation on the test set. We collect the required annotations and define a new challenging experimental setup for this task based on existing public datasets. We show improved performances compared to competitive baselines and appropriate adaptations of existing work

Understanding Road Layout from Videos as a Whole

In this paper, we address the problem of inferring the layout of complex road scenes from video sequences. To this end, we formulate it as a top-view road attributes prediction problem and our goal is to predict these attributes for each frame both accurately and consistently. In contrast to prior work, we exploit the following three novel aspects: leveraging camera motions in videos, including context cues and incorporating long-term video information. Specifically, we introduce a model that aims to enforce prediction consistency in videos. Our model consists of one LSTM and one Feature Transform Module (FTM). The former implicitly incorporates the consistency constraint with its hidden states, and the latter explicitly takes the camera motion into consideration when aggregating information along videos. Moreover, we propose to incorporate context information by introducing road participants, e.g. objects, into our model. When the entire video sequence is available, our model is also able to encode both local and global cues, e.g. information from both past and future frames. Experiments on two data sets show that: (1) Incorporating either global or contextual cues improves the prediction accuracy and leveraging both gives the best performance. (2) Introducing the LSTM and FTM modules improves the prediction consistency in videos. (3) The proposed method outperforms the SOTA by a large margin.

Peek-a-boo: Occlusion Reasoning in Indoor Scenes with Plane Representations

We address the challenging task of occlusion-aware indoor 3D scene understanding. We represent scenes by a set of planes, where each one is defined by its normal, offset and two masks outlining (i) the extent of the visible part and (ii) the full region that consists of both visible and occluded parts of the plane. We infer these planes from a single input image with a novel neural network architecture. It consists of a two-branch category-specific module that aims to predict layout and objects of the scene separately so that different types of planes can be handled better. We also introduce a novel loss function based on plane warping that can leverage multiple views at training time for improved occlusion-aware reasoning. In order to train and evaluate our occlusion-reasoning model, we use the ScanNet dataset and propose (i) a strategy to automatically extract ground truth for both visible and hidden regions and (ii) a new evaluation metric that specifically focuses on the prediction in hidden regions. We empirically demonstrate that our proposed approach can achieve higher accuracy for occlusion reasoning compared to competitive baselines on the ScanNet dataset, e.g. 42.65% relative improvement on hidden regions.

Domain Adaptation for Structured Output via Discriminative Patch Representations

Predicting structured outputs such as semantic segmentation relies on expensive per-pixel annotations to learn supervised models like convolutional neural networks. However, models trained on one data domain may not generalize well to other domains without annotations for model finetuning. To avoid the labor-intensive process of annotation, we develop a domain adaptation method to adapt the source data to the unlabeled target domain. We propose to learn discriminative feature representations of patches in the source domain by discovering multiple modes of patch-wise output distribution through the construction of a clustered space. With such representations as guidance, we use an adversarial learning scheme to push the feature representations of target patches in the clustered space closer to the distributions of source patches. In addition, we show that our framework is complementary to existing domain adaptation techniques and achieves consistent improvements on semantic segmentation. Extensive ablations and results are demonstrated on numerous benchmark datasets with various settings, such as synthetic-to-real and cross-city scenarios.

A Dataset for High-Level 3D Scene Understanding of Complex Road Scenes in the Top-View

We introduce a novel dataset for high-level 3D scene understanding of complex road scenes. Our annotations extend the existing datasets KITTI [5] and nuScenes [1] with semantically and geometrically meaningful attributes like the number of lanes or the existence of, and distance to, intersections, sidewalks and crosswalks. Our attributes are rich enough to build a meaningful representation of the scene in the top-view and provide a tangible interface to the real world for several practical applications.

A Parametric Top-View Representation of Complex Road Scenes

In this paper, we address the problem of inferring the layout of complex road scenes given a single camera as input. To achieve that, we first propose a novel parameterized model of road layouts in a top-view representation, which is not only intuitive for human visualization but also provides an interpretable interface for higher-level decision making. Moreover, the design of our top-view scene model allows for efficient sampling and thus generation of large-scale simulated data, which we leverage to train a deep neural network to infer our scene model’s parameters. Specifically, our proposed training procedure uses supervised domain-adaptation techniques to incorporate both simulated as well as manually annotated data. Finally, we design a Conditional Random Field (CRF) that enforces coherent predictions for a single frame and encourages temporal smoothness among video frames. Experiments on two public data sets show that: (1) Our parametric top-view model is representative enough to describe complex road scenes; (2) The proposed method outperforms baselines trained on manually-annotated or simulated data only, thus getting the best of both; (3) Our CRF is able to generate temporally smoothed while semantically meaningful results.

Learning To Simulate

Simulation is a useful tool in situations where training data for machine learning models is costly to annotate or even hard to acquire. In this work, we propose a reinforcement learning-based method for automatically adjusting the parameters of any (non-differentiable) simulator, thereby controlling the distribution of synthesized data in order to maximize the accuracy of a model trained on that data. In contrast to prior art that hand-crafts these simulation parameters or adjusts only parts of the available parameters, our approach fully controls the simulator with the actual underlying goal of maximizing accuracy, rather than mimicking the real data distribution or randomly generating a large volume of data. We find that our approach (i) quickly converges to the optimal simulation parameters in controlled experiments and (ii) can indeed discover good sets of parameters for an image rendering simulator in actual computer vision applications.

Memory Warps for Long-Term Online Video Representations and Anticipation

We propose a novel memory-based online video representation that is efficient, accurate and predictive. This is in contrast to prior works that often rely on computationally heavy 3D convolutions, ignore motion when aligning features over time, or operate in an off-line mode to utilize future frames. In particular, our memory (i) holds the feature representation, (ii) is spatially warped over time to compensate for observer and scene motions, (iii) can carry long-term information, and (iv) enables predicting feature representations in future frames. By exploring a variant that operates at multiple temporal scales, we efficiently learn across even longer time horizons. We apply our online framework to object detection in videos, obtaining a large 2.3 times speed-up and losing only 0.9% mAP on ImageNet-VID dataset, compared to prior works that even use future frames. Finally, we demonstrate the predictive property of our representation in two novel detection setups, where features are propagated over time to (i) significantly enhance a real-time detector by more than 10% mAP in a multi-threaded online setup and to (ii) anticipate objects in future frames.