Sound Event Classification is the process of identifying and categorizing different types of sound events, such as speech, music, or environmental noises, in an audio signal.

Posts

CLAP-S: Support Set Based Adaptation for Downstream Fiber-optic Acoustic Recognition

Contrastive Language-Audio Pretraining (CLAP) models have demonstrated unprecedented performance in various acoustic signal recognition tasks. Fiber-optic-based acoustic recognition is one of the most important downstream tasks and plays a significant role in environmental sensing. Adapting CLAP for fiber-optic acoustic recognition has become an active research area. As a non-conventional acoustic sensor, fiberoptic acoustic recognition presents a challenging, domain-specific, low-shot deployment environment with significant domain shifts due to unique frequency response and noise characteristics. To address these challenges, we propose a support-based adaptation method, CLAP-S, which linearly interpolates a CLAP Adapter with the Support Set, leveraging both implicit knowledge through fine-tuning and explicit knowledge retrieved from memory for cross-domain generalization. Experimental results show that our method delivers competitive performance on both laboratory recorded fiber-optic ESC-50 datasets and a real-world fiber optic gunshot-firework dataset. Our research also provides valuable insights for other downstream acoustic recognition tasks.

Text-guided Device-realistic Sound Generation for Fiber-based Sound Event Classification

Recent advancements in unique acoustic sensing devices and large-scale audio recognition models have unlocked new possibilities for environmental sound monitoring and detection. However, applying pretrained models to non-conventional acoustic sensors results in performance degradation due to domain shifts, caused by differences in frequency response and noise characteristics from the original training data. In this study, we introduce a text-guided framework for generating new datasets to retrain models specifically for these non-conventional sensors efficiently. Our approach integrates text-conditional audio generative models with two additional steps: (1) selecting audio samples based on text input to match the desired sounds, and (2) applying domain transfer techniques using recorded impulse responses and background noise to simulate the characteristics of the sensors. We demonstrate this process by generating emulated signals for fiber-optic Distributed Acoustic Sensors (DAS), creating datasets similar to the recorded ESC-50 dataset. The generated signals are then used to train a classifier, which outperforms few-shot learning approaches in environmental sound classification.

CLAP-S: Support Set Based Adaptation for Downstream Fiber-optic Acoustic Recognition

Contrastive Language-Audio Pretraining (CLAP) models have demonstrated unprecedented performance in various acoustic signal recognition tasks. Fiber optic-based acoustic recognition is one of the most important downstream tasks and plays a significant role in environmental sensing. Adapting CLAP for fiber-optic acoustic recognition has become an active research area. As a non-conventional acoustic sensor, fiber-optic acoustic recognition presents a challenging, domain-specific, low-shot deployment environment with significant domain shifts due to unique frequency response and noise characteristics. To address these challenges, we propose a support-based adaptation method, CLAP-S, which linearly interpolates a CLAP Adapter with the Support Set, leveraging both implicit knowledge through fine-tuning and explicit knowledge retrieved from memory for cross-domain generalization. Experimental results show that our method delivers competitive performance on both laboratory-recorded fiber-optic ESC-50 datasets and a real-world fiber-optic gunshot-firework dataset. Our research also provides valuable insights for other downstream acoustic recognition tasks.