Stanford University is a global leader in research and innovation, known for excellence in AI, medicine, and engineering. Its proximity to Silicon Valley fuels groundbreaking entrepreneurship and discovery. We have collaborated with Stanford University on cutting-edge AI research, including vision-language modeling, self-supervised learning, and neural architecture optimization. Our joint work advances the development of scalable, data-efficient AI systems for real-world deployment. Please read about our latest news and collaborative publications with Stanford University.

https://www.stanford.edu/

Posts

Solving Inverse Problems via a Score-Based Prior: An Approximation-Free Posterior Sampling Approach

Diffusion models (DMs) have proven to be effective in modeling high-dimensional distributions, leading to their widespread adoption for representing complex priors in Bayesian inverse problems (BIPs). However, current DM-based posterior sampling methods proposed for solving common BIPs rely on heuristic approximations to the generative process. To exploit the generative capability of DMs and avoid the usage of such approximations, we propose an ensemble-based algorithm that performs posterior sampling without the use of heuristic approximations. Our algorithm is motivated by existing works that combine DM-based methods with the sequential Monte Carlo (SMC) method. By examining how the prior evolves through the diffusion process encoded by the pre-trained score function, we derive a modified partial differential equation (PDE) governing the evolution of the corresponding posterior distribution. This PDE includes a modified diffusion term and a reweighting term, which can be simulated via stochastic weighted particle methods. Theoretically, we prove that the error between the true posterior distribution canbe bounded in terms of the training error of the pre-trained score function and the ]number of particles in the ensemble. Empirically, we validate our algorithm on several inverse problems in imaging to show that our method gives more accurate reconstructions compared to existing DM-based methods.