Texas A&M (TAMU) is a major public research university known for engineering, agriculture, and military research. It drives innovation through state and national partnerships in energy, defense, and health. NEC Labs America partners with Texas A&M University on acoustic modeling, source separation, and signal enhancement for smart environments. Please read about our latest news and collaborative publications with Texas A&M University.

Posts

Learning Disentangled Equivariant Representation for Explicitly Controllable 3D Molecule Generation

We consider the conditional generation of 3D drug-like molecules with explicit control over molecular properties such as drug-like properties (e.g., Quantitative Estimate of Druglikenessor Synthetic Accessibility score) and effectively binding to specific protein sites. To tackle this problem, we propose an E(3)-equivariant Wasserstein autoencoder and factorize thelatent space of our generative model into two disentangled aspects: molecular properties and the remaining structural context of 3D molecules. Our model ensures explicit control over these molecular attributes while maintaining equivariance of coordinate representation and invariance of data likelihood. Furthermore, we introduce a novel alignment-based coordinate loss to adapt equivariant networks for auto-regressive denovo 3D molecule generation from scratch. Extensive experiments validate our model’s effectiveness on property-guidedand context-guided molecule generation, both for de-novo 3D molecule design and structure-based drug discovery against protein targets.

Towards Learning Disentangled Representations for Time Series

Promising progress has been made toward learning efficient time series representations in recent years, but the learned representations often lack interpretability and do not encode semantic meanings by the complex interactions of many latent factors. Learning representations that disentangle these latent factors can bring semantic-rich representations of time series and further enhance interpretability. However, directly adopting the sequential models, such as Long Short-Term Memory Variational AutoEncoder (LSTM-VAE), would encounter a Kullback?Leibler (KL) vanishing problem: the LSTM decoder often generates sequential data without efficiently using latent representations, and the latent spaces sometimes could even be independent of the observation space. And traditional disentanglement methods may intensify the trend of KL vanishing along with the disentanglement process, because they tend to penalize the mutual information between the latent space and the observations. In this paper, we propose Disentangle Time-Series, a novel disentanglement enhancement framework for time series data. Our framework achieves multi-level disentanglement by covering both individual latent factors and group semantic segments. We propose augmenting the original VAE objective by decomposing the evidence lower-bound and extracting evidence linking factorial representations to disentanglement. Additionally, we introduce a mutual information maximization term between the observation space to the latent space to alleviate the KL vanishing problem while preserving the disentanglement property. Experimental results on five real-world IoT datasets demonstrate that the representations learned by DTS achieve superior performance in various tasks with better interpretability.

Automated Anomaly Detection via Curiosity-Guided Search and Self-Imitation Learning

Anomaly detection is an important data mining task with numerous applications, such as intrusion detection, credit card fraud detection, and video surveillance. However, given a specific complicated task with complicated data, the process of building an effective deep learning-based system for anomaly detection still highly relies on human expertise and laboring trials. Also, while neural architecture search (NAS) has shown its promise in discovering effective deep architectures in various domains, such as image classification, object detection, and semantic segmentation, contemporary NAS methods are not suitable for anomaly detection due to the lack of intrinsic search space, unstable search process, and low sample efficiency. To bridge the gap, in this article, we propose AutoAD, an automated anomaly detection framework, which aims to search for an optimal neural network model within a predefined search space. Specifically, we first design a curiosity-guided search strategy to overcome the curse of local optimality. A controller, which acts as a search agent, is encouraged to take actions to maximize the information gain about the controller’s internal belief. We further introduce an experience replay mechanism based on self-imitation learning to improve the sample efficiency. Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoAD achieves the best performance, comparing with existing handcrafted models and traditional search methods.

Disentangled Recurrent Wasserstein Auto-Encoder

Learning disentangled representations leads to interpretable models and facilitates data generation with style transfer, which has been extensively studied on static data such as images in an unsupervised learning framework. However, only a few works have explored unsupervised disentangled sequential representation learning due to challenges of generating sequential data. In this paper, we propose recurrent Wasserstein Autoencoder (R-WAE), a new framework for generative modeling of sequential data. R-WAE disentangles the representation of an input sequence into static and dynamic factors (i.e., time-invariant and time-varying parts). Our theoretical analysis shows that, R-WAE minimizes an upper bound of a penalized form of the Wasserstein distance between model distribution and sequential data distribution, and simultaneously maximizes the mutual information between input data and different disentangled latent factors, respectively. This is superior to (recurrent) VAE which does not explicitly enforce mutual information maximization between input data and disentangled latent representations. When the number of actions in sequential data is available as weak supervision information, R-WAE is extended to learn a categorical latent representation of actions to improve its disentanglement. Experiments on a variety of datasets show that our models outperform other baselines with the same settings in terms of disentanglement and unconditional video generation both quantitatively and qualitatively.

AutoOD: Neural Architecture Search for Outlier Detection

Outlier detection is an important data mining task with numerous applications such as intrusion detection, credit card fraud detection, and video surveillance. However, given a specific task with complex data, the process of building an effective deep learning based system for outlier detection still highly relies on human expertise and laboring trials. Moreover, while Neural Architecture Search (NAS) has shown its promise in discovering effective deep architectures in various domains, such as image classification, object detection and semantic segmentation, contemporary NAS methods are not suitable for outlier detection due to the lack of intrinsic search space and low sample efficiency. To bridge the gap, in this paper, we propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model within a predefined search space. Specifically, we introduce an experience replay mechanism based on self-imitation learning to improve the sample efficiency. Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance, comparing with existing handcrafted models and traditional search methods.

Uncertainty Aware Physically Guided Proxy Tasks for Unseen Domain Face Anti-Spoofing

Face anti-spoofing (FAS) seeks to discriminate genuine faces from fake ones arising from any type of spoofing attack. Due to the wide variety of attacks, it is implausible to obtain training data that spans all attack types. We propose to leverage physical cues to attain better generalization on unseen domains. As a specific demonstration, we use physically guided proxy cues such as depth, reflection, and material to complement our main anti-spoofing (a.k.a liveness detection) task, with the intuition that genuine faces across domains have consistent face like geometry, minimal reflection, and skin material. We introduce a novel uncertainty-aware attention scheme that independently learns to weigh the relative contributions of the main and proxy tasks, preventing the over confident issue with traditional attention modules. Further, we propose attribute-assisted hard negative mining to disentangle liveness irrelevant features with liveness features during learning. We evaluate extensively on public benchmarks with intra-dataset and inter-dataset protocols. Our method achieves superior performance especially in unseen domain generalization for FAS.

Peek-a-boo: Occlusion Reasoning in Indoor Scenes with Plane Representations

We address the challenging task of occlusion-aware indoor 3D scene understanding. We represent scenes by a set of planes, where each one is defined by its normal, offset and two masks outlining (i) the extent of the visible part and (ii) the full region that consists of both visible and occluded parts of the plane. We infer these planes from a single input image with a novel neural network architecture. It consists of a two-branch category-specific module that aims to predict layout and objects of the scene separately so that different types of planes can be handled better. We also introduce a novel loss function based on plane warping that can leverage multiple views at training time for improved occlusion-aware reasoning. In order to train and evaluate our occlusion-reasoning model, we use the ScanNet dataset and propose (i) a strategy to automatically extract ground truth for both visible and hidden regions and (ii) a new evaluation metric that specifically focuses on the prediction in hidden regions. We empirically demonstrate that our proposed approach can achieve higher accuracy for occlusion reasoning compared to competitive baselines on the ScanNet dataset, e.g. 42.65% relative improvement on hidden regions.

Behavior-based Community Detection: Application to Host Assessment in Enterprise Information Networks

Behavior-based Community Detection: Application to Host Assessment in Enterprise Information Networks Community detection in complex networks is a fundamental problem that attracts much attention across various disciplines. Previous studies have been mostly focusing on external connections between nodes (i.e., topology structure) in the network whereas largely ignoring internal intricacies (i.e., local behavior) of each node. A pair of nodes without any interaction can still share similar internal behaviors. For example, in an enterprise information network, compromised computers controlled by the same intruder often demonstrate similar abnormal behaviors even if they do not connect with each other. In this paper, we study the problem of community detection in enterprise information networks, where large-scale internal events and external events coexist on each host. The discovered host communities, capturing behavioral affinity, can benefit many comparative analysis tasks such as host anomaly assessment. In particular, we propose a novel community detection framework to identify behavior-based host communities in enterprise information networks, purely based on large-scale heterogeneous event data. We continue proposing an efficient method for assessing host’s anomaly level by leveraging the detected host communities. Experimental results on enterprise networks demonstrate the effectiveness of our model.

Collaborative Alert Ranking for Anomaly Detection

Given a large number of low-quality heterogeneous categorical alerts collected from an anomaly detection system, how to characterize the complex relationships between different alerts and deliver trustworthy rankings to end users? While existing techniques focus on either mining alert patterns or filtering out false positive alerts, it can be more advantageous to consider the two perspectives simultaneously in order to improve detection accuracy and better understand abnormal system behaviors. In this paper, we propose CAR, a collaborative alert ranking framework that exploits both temporal and content correlations from heterogeneous categorical alerts. CAR first builds a hierarchical Bayesian model to capture both short-term and long-term dependencies in each alert sequence. Then, an entity embedding-based model is proposed to learn the content correlations between alerts via their heterogeneous categorical attributes. Finally, by incorporating both temporal and content dependencies into a unified optimization framework, CAR ranks both alerts and their corresponding alert patterns. Our experiments-using both synthetic and real-world enterprise security alert data-show that CAR can accurately identify true positive alerts and successfully reconstruct the attack scenarios at the same time.