Tianxiao Li NEC Labs America

Tianxiao Li

Postdoctoral Scientist

Machine Learning

Posts

Learning Disentangled Equivariant Representation for Explicitly Controllable 3D Molecule Generation

We consider the conditional generation of 3D drug-like molecules with explicit control over molecular properties such as drug-like properties (e.g., Quantitative Estimate of Druglikenessor Synthetic Accessibility score) and effectively binding to specific protein sites. To tackle this problem, we propose an E(3)-equivariant Wasserstein autoencoder and factorize thelatent space of our generative model into two disentangled aspects: molecular properties and the remaining structural context of 3D molecules. Our model ensures explicit control over these molecular attributes while maintaining equivariance of coordinate representation and invariance of data likelihood. Furthermore, we introduce a novel alignment-based coordinate loss to adapt equivariant networks for auto-regressive denovo 3D molecule generation from scratch. Extensive experiments validate our model’s effectiveness on property-guidedand context-guided molecule generation, both for de-novo 3D molecule design and structure-based drug discovery against protein targets.

Introducing the Trustworthy Generative AI Project: Pioneering the Future of Compositional Generation and Reasoning

We are thrilled to announce the launch of our latest research initiative, the Trustworthy Generative AI Project. This ambitious project is set to revolutionize how we interact with multimodal content by developing cutting-edge generative models capable of compositional generation and reasoning across text, images, reports, and even 3D videos.

Disentangled Wasserstein Autoencoder for T-Cell Receptor Engineering

In protein biophysics, the separation between the functionally important residues (forming the active site or binding surface) and those that create the overall structure (the fold) is a well-established and fundamental concept. Identifying and modifying those functional sites is critical for protein engineering but computationally nontrivial, and requires significant domain knowledge. To automate this process from a data-driven perspective, we propose a disentangled Wasserstein autoencoder with an auxiliary classifier, which isolates the function-related patterns from the rest with theoretical guarantees. This enables one-pass protein sequence editing and improves the understanding of the resulting sequences and editing actionsinvolved. To demonstrate its effectiveness, we apply it to T-cell receptors (TCRs), a well-studied structure-function case. We show that our method can be used to alterthe function of TCRs without changing the structural backbone, outperforming several competing methods in generation quality and efficiency, and requiring only 10% of the running time needed by baseline models. To our knowledge, this is the first approach that utilizes disentangled representations for TCR engineering.