Transactive Energy (TE) is a system where energy transactions are managed through decentralized, market-based mechanisms. It enables the dynamic exchange of energy between consumers, producers, and storage systems to optimize energy use and grid stability. TE uses real-time data, automation, and advanced algorithms to facilitate energy trading, demand response, and the integration of renewable energy sources. By encouraging participation from various stakeholders, it supports a more flexible, efficient, and resilient energy grid.

Posts

Transactive Energy Management with Blockchain Smart Contracts for P2P Multi-Settlement Markets

Integration of renewables and energy storage, leading to rise of prosumers, has created localized bidirectional flows. As the result, the utility demand has decreased and traditional centralized controller can no longer realize the optimal performance of ever growing distribution systems. To achieve scalable control, exploiting the potential of smart loads and Distributed Energy Resource (DER) controllability, a framework for decentralized Peer-To-Peer (P2P) energy management has been developed to manage localized micro-energy markets. Such decentralized management approach could, in theory, sustain diverse prosumer and utility business models. We have been developing an autonomous decentralized management solution that maximizes the benefit of prosumers while protecting utility assets. This P2P energy trading market leverages Blockchain technology and its Smart Contract framework. This paper presents 1) transactive energy market for P2P multi-settlement markets, 2) architecture of blockchain-based energy management system, 3) smart contract design that solves an economic dispatch problem of DERs to maximize the profit of pro/consumers.