Trinity College Dublin is Ireland’s leading university, renowned for its research in AI, biosciences, and the humanities. It combines historic tradition with modern innovation in a global academic hub. In partnership with Trinity College Dublin, NECLA explored domain adaptation and disentangled representation learning using improved StyleGAN training methods. We joint work proposed new ways to isolate style and content in generated images, enabling more flexible image manipulation and robust generative performance.

Posts

Multi-span OSNR and GSNR Prediction using Cascaded Learning

We implement a cascaded learning framework leveraging three different EDFA and fiber component models for OSNR and GSNR prediction, achieving MAEs of 0.20 and 0.14 dBover a 5-span network under dynamic channel loading.

Multi-span optical power spectrum prediction using cascaded learning with one-shot end-to-end measurement

Scalable methods for optical transmission performance prediction using machine learning (ML) are studied in metro reconfigurable optical add-drop multiplexer (ROADM) networks. A cascaded learning framework is introduced to encompass the use of cascaded component models for end-to-end (E2E) optical path prediction augmented with different combinations of E2E performance data and models. Additional E2E optical path data and models are used to reduce the prediction error accumulation in the cascade. Off-line training (pre-trained prior to deployment) and transfer learning are used for component-level erbium-doped fiber amplifier (EDFA) gain models to ensure scalability. Considering channel power prediction, we show that the data collection processof the pre-trained EDFA model can be reduced to only 5% of the original training set using transfer learning. We evaluate the proposed method under three different topologies with field deployed fibers and achieve a mean absolute error of 0.16 dB with a single (one-shot) E2E measurement on the deployed 6-span system with 12 EDFAs.

Field Trial of Coexistence and Simultaneous Switching of Real-Time Fiber Sensing and Coherent 400 GbE in a Dense Urban Environment

Recent advances in optical fiber sensing have enabled telecom network operators to monitor their fiber infrastructure while generating new revenue in various application scenarios, including data center interconnect, public safety, smart cities, and seismic monitoring. However, given the high utilization of fiber networks for data transmission, it is undesirable to allocate dedicated fiber strands solely for sensing purposes. Therefore, it is crucial to ensure the reliable coexistence of fiber sensing and communication signals that co-propagate on the same fiber. In this paper, we conduct field trials in a reconfigurable optical add-drop multiplexer (ROADM) network enabled by the PAWR COSMOS testbed, utilizing metro area fibers in Manhattan, New York City. We verify the coexistence of real-time constant-amplitude distributed acoustic sensing (DAS), coherent 400 GbE, and analog radio-over-fiber (ARoF) signals. Measurement results obtained from the field trial demonstrate that the quality of transmission (QoT) of the coherent 400 GbE signal remains unaffected during co-propagation with DAS and ARoF signals in adjacent dense wavelength-division multiplexing (DWDM) channels. In addition, we present a use case of this coexistence system supporting preemptive DAS-informed optical path switching before link failure.

Field Trial of Coexistence and Simultaneous Switching of Real-time Fiber Sensing and 400GbE Supporting DCI and 5G Mobile Services

Coexistence of real-time constant-amplitude distributed acoustic sensing (DAS) and 400GbE signals is verified by field trial over metro fibers, demonstrating no QoT impact during co-propagation and supporting preemptive DAS-informed optical path switching before link failure