The University of California, Berkeley (Cal), established in 1868, is a public land-grant research university and the flagship institution of the University of California System. It is a large, primarily residential research university known for its comprehensive doctoral programs and significant contributions across various fields. We have worked with UC Berkeley on foundational AI research, including self-supervised learning, neural architecture search, and contrastive learning. Together, we’ve developed models that improve generalization, reduce training data requirements, and power next-generation intelligent systems. Please read about our latest news and collaborative publications with the University of California, Berkeley.

Posts

Uncertainty Propagation on LLM Agent

Large language models (LLMs) integrated into multi-step agent systems enable complex decision-making processes across various applications. However, their outputs often lack reliability, making uncertainty estimation crucial. Existing uncertainty estimation methods primarily focus on final-step outputs, which fail to account for cumulative uncertainty over the multi-step decision-making process and the dynamic interactions between agents and their environments. To address these limitations, we propose SAUP (Situation Awareness Uncertainty Propagation), a novel framework that propagates uncertainty through each step of an LLM-based agent’s reasoning process. SAUP incorporates situational awareness by assigning situational weights to each step’s uncertainty during the propagation. Our method, compatible with various one-step uncertainty estimation techniques, provides a comprehensive and accurate uncertainty measure. Extensive experiments on benchmark datasets demonstrate that SAUP significantly outperforms existing state-of-the-art methods, achieving up to 20% improvement in AUROC.

Where’s the Liability in the Generative Era? Recovery-based Black-Box Detection of AI-Generated Content

The recent proliferation of photorealistic images created by generative models has sparked both excitement and concern, as these images are increasingly indistinguishable from real ones to the human eye. While offering new creative and commercial possibilities, the potential for misuse, such as in misinformation and fraud, highlights the need for effective detection methods. Current detection approaches often rely on access to model weights or require extensive collections of real image datasets, limiting their scalability and practical application in real-world scenarios. In this work, we introduce a novel black-box detection framework that requires only API access, sidestepping the need for model weights or large auxiliary datasets. Our approach leverages a corrupt-and-recover strategy: by masking part of an image and assessing the model’s ability to reconstruct it, we measure the likelihood that the image was generated by the model itself. For black-box models that do not support masked-image inputs, we incorporate a cost-efficient surrogate model trained to align with the target model’s distribution, enhancing detection capability. Our framework demonstrates strong performance, outperforming baseline methods by 4.31% in mean average precision across eight diffusion model variant datasets.

SFS: Smarter Code Space Search improves LLM Inference Scaling

We frame code generation as a black-box optimization problem within the code space and demonstrate how optimization-inspired techniques can enhance inference scaling. Based on this perspective, we propose SCATTERED FOREST SEARCH (SFS), a novel approach that improves solution diversity and better exploits feedback during evolutionary search. Our theoretical analysis illustrates how these methods help avoid local optima during optimization, leading to more efficient exploration. Extensive experiments on HumanEval, MBPP, APPS, CodeContests, and Leetcode reveal significant performance gains. For instance, our method achieves a pass@1 rate of 67.1% on HumanEval+ and 87.2% on HumanEval with GPT-3.5, marking improvements of 8.6% and 4.3% over the state-of-the-art, while also halving the iterations needed to find the correct solution. Furthermore, our approach scales more efficiently than existing search techniques, including tree search, line search, and repeated sampling.

Chain-of-region: Visual Language Models Need Details for Diagram Analysis

Visual Language Models (VLMs) like GPT-4V have broadened the scope of LLM applications, yet they face significant challenges in accurately processing visual details, particularly in scientific diagrams. This paper explores the necessity of meticulous visual detail collection and region decomposition for enhancing the performance of VLMs in scientific diagram analysis. We propose a novel approach that combines traditional computer vision techniques with VLMs to systematically decompose diagrams into discernible visual elements and aggregate essential metadata. Our method employs techniques in OpenCV library to identify and label regions, followed by a refinement process using shape detection and region merging algorithms, which are particularly suited to the structured nature of scientific diagrams. This strategy not only improves the granularity and accuracy of visual information processing but also extends the capabilities of VLMs beyond their current limitations. We validate our approach through a series of experiments that demonstrate enhanced performance in diagram analysis tasks, setting a new standard for integrating visual and language processing in a multimodal context.

Controllable Safety-Critical Closed-Loop Traffic Simulation via Guided Diffusion

Evaluating the performance of autonomous vehicle planning algorithms necessitates simulating long-tail traffic scenarios. Traditional methods for generating safety-critical scenarios often fall short in realism and controllability. Furthermore, these techniques generally neglect the dynamics of agent interactions. To mitigate these limitations, we introduce a novel closed-loop simulation framework rooted in guided diffusion models. Our approach yields two distinct advantages: 1) the generation of realistic long-tail scenarios that closely emulate real-world conditions, and 2) enhanced controllability, enabling more comprehensive and interactive evaluations. We achieve this through novel guidance objectives that enhance road progress while lowering collision and off-road rates. We develop a novel approach to simulate safety-critical scenarios through an adversarial term in the denoising process, which allows the adversarial agent to challenge a planner with plausible maneuvers, while all agents in the scene exhibit reactive and realistic behaviors. We validate our framework empirically using the NuScenes dataset, demonstrating improvements in both realism and controllability. These findings affirm that guided diffusion models provide a robust and versatile foundation for safety-critical, interactive traffic simulation, extending their utility across the broader landscape of autonomous driving. For additional resources and demonstrations, visit our project page at https://safe-sim.github.io/

Recommend for a Reason: Unlocking the Power of Unsupervised Aspect-Sentiment Co-Extraction

Compliments and concerns in reviews are valuable for understanding users’ shopping interests and their opinions with respect to specific aspects of certain items. Existing review-based recommenders favor large and complex language encoders that can only learn latent and uninterpretable text representations. They lack explicit user-attention and item-property modeling, which however could provide valuable information beyond the ability to recommend items. Therefore, we propose a tightly coupled two-stage approach, including an Aspect-Sentiment Pair Extractor (ASPE) and an Attention-Property-aware Rating Estimator (APRE). Unsupervised ASPE mines Aspect-Sentiment pairs (AS-pairs) and APRE predicts ratings using AS-pairs as concrete aspect-level evidences. Extensive experiments on seven real-world Amazon Review Datasets demonstrate that ASPE can effectively extract AS-pairs which enable APRE to deliver superior accuracy over the leading baselines.

Optimal Transport Classifier: Defending Against Adversarial Attacks by Regularized Deep Embedding

Recent studies have demonstrated the vulnerability of deep convolutional neural networks against adversarial examples. Inspired by the observation that the intrinsic dimension of image data is much smaller than its pixel space dimension and the vulnerability of neural networks grows with the input dimension, we propose to embed high-dimensional input images into a low-dimensional space to perform classification. However, arbitrarily projecting the input images to a low-dimensional space without regularization will not improve the robustness of deep neural networks. Leveraging optimal transport theory, we propose a new framework, Optimal Transport Classifier (OT-Classifier), and derive an objective that minimizes the discrepancy between the distribution of the true label and the distribution of the OT-Classifier output. Experimental results on several benchmark datasets show that, our proposed framework achieves state-of-the-art performance against strong adversarial attack methods.

SVBRDF-Invariant Shape and Reflectance Estimation from a Light-Field Camera

Light-field cameras have recently emerged as a powerful tool for one-shot passive 3D shape capture. However, obtaining the shape of glossy objects like metals or plastics remains challenging, since standard Lambertian cues like photo-consistency cannot be easily applied. In this paper, we derive a spatially-varying (SV)BRDF-invariant theory for recovering 3D shape and reflectance from light-field cameras. Our key theoretical insight is a novel analysis of diffuse plus single-lobe SVBRDFs under a light-field setup. We show that, although direct shape recovery is not possible, an equation relating depths and normals can still be derived. Using this equation, we then propose using a polynomial (quadratic) shape prior to resolve the shape ambiguity. Once shape is estimated, we also recover the reflectance. We present extensive synthetic data on the entire MERL BRDF dataset, as well as a number of real examples to validate the theory, where we simultaneously recover shape and BRDFs from a single image taken with a Lytro Illum camera.

Adaptive Memory Networks

Adaptive Memory Networks We present Adaptive Memory Networks (AMN) that processes input-question pairs to dynamically construct a network architecture optimized for lower inference times for Question Answering (QA) tasks. AMN processes the input story to extract entities and stores them in memory banks. Starting from a single bank, as the number of input entities increases, AMN learns to create new banks as the entropy in a single bank becomes too high. Hence, after processing an input-question(s) pair, the resulting network represents a hierarchical structure where entities are stored in different banks, distanced by question relevance. At inference, one or few banks are used, creating a tradeoff between accuracy and performance. AMN is enabled by dynamic networks that allow input dependent network creation and efficiency in dynamic mini-batching as well as our novel bank controller that allows learning discrete decision making with high accuracy. In our results, we demonstrate that AMN learns to create variable depth networks depending on task complexity and reduces inference times for QA tasks.