The University of California, Los Angeles (UCLA), founded in 1919, is a public research university committed to the creation, dissemination, preservation, and application of knowledge for the advancement of global society. It offers a dynamic environment that combines the engaging atmosphere of a spirited public institution with expansive opportunities in a world-class city. We have partnered with UCLA on vision-language research and the development of generative adversarial networks. Our collaboration has improved the integration of visual and textual data for tasks such as image captioning, retrieval, and cross-modal learning. Please read about our latest news and collaborative publications with the University of California, Los Angeles.

Posts

Human Texts Are Outliers: Detecting LLM-generated Texts via Out-of-distribution Detection

The rapid advancement of large language models (LLMs) such as ChatGPT, DeepSeek, and Claude has significantly increased the presence of AI-generated text in digital communication. This trend has heightened the need for reliable detection methods to distinguish between human-authored and machine-generated content. Existing approaches both zero-shot methods and supervised classifiers largely conceptualize this task as a binary classification problem, often leading to poor generalization across domains and models. In this paper, we argue that such a binary formulation fundamentally mischaracterizes the detection task by assuming a coherent representation of human-written texts. In reality, human texts do not constitute a unified distribution, and their diversity cannot be effectively captured through limited sampling. This causes previous classifiers to memorize observed OOD characteristics rather than learn the essence of ‘non-ID’ behavior, limiting generalization to unseen human-authored inputs. Based on this observation, we propose reframing the detection task as an out-of-distribution (OOD) detection problem, treating human-written texts as distributional outliers while machine-generated texts are in-distribution (ID) samples. To this end, we develop a detection framework using one-class learning method including DeepSVDD and HRN, and score-based learning techniques such as energy-based method, enabling robust and generalizable performance. Extensive experiments across multiple datasets validate the effectiveness of our OOD-based approach. Specifically, the OOD-based method achieves 98.3% AUROC and AUPR with only 8.9% FPR95 on DeepFake dataset. Moreover, we test our detection framework on multilingual, attacked, and unseen-model and -domain text settings, demonstrating the robustness and generalizability of our framework. Code, pretrained weights, and demo will be released openly at https://github.com/cong-zeng/ood-llm-detect.

Domain Specialization as the Key to Make Large Language Models Disruptive: A Comprehensive Survey

Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). Domain specification techniques are key to making large language models disruptive in many applications. Specifically, to solve these hurdles, there has been a notable increase in research and practices conducted in recent years on the domain specialization of LLMs. This emerging field of study, with its substantial potential for impact, necessitates a comprehensive and systematic review to summarize better and guide ongoing work in this area. In this article, we present a comprehensive survey on domain specification techniques for large language models, an emerging direction critical for large language model applications. First, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. Second, we present an extensive taxonomy of critical application domains that can benefit dramatically from specialized LLMs, discussing their practical significance and open challenges. Last, we offer our insights into the current research status and future trends in this area.

National Intern Day at NEC Laboratories America: Celebrating the Next Generation of Innovators

On National Intern Day, NEC Laboratories America celebrates the bright minds shaping tomorrow’s technology. Each summer, interns from top universities work side-by-side with our researchers on real-world challenges in AI, cybersecurity, data science, and more. From groundbreaking research to team-building events, our interns contribute fresh ideas and bold thinking that power NEC’s innovation engine.

State-Aware Anomaly Detection for Massive Sensor Data in Internet of Things

With the escalating prevalence of Internet of Things (IoTs) in critical infrastructure, the requirement for efficient and effective anomaly detection solution becomes increasingly important. Unfortunately, most prior research works have largely overlooked to adapt detection criteria for different operational states, thereby rendering them inadequate when confronted with diverse and complex work states of IoTs. In this study, we address the challenges of IoT anomaly detection across various work states by introducing a novel model called Hybrid State Encoder-Decoder (HSED). HSED employs a two-step approach, beginning with identification and construction of a hybrid state for Key Performance Indicator (KPI) sensors based on their state attributes, followed by the detection of abnormal or failure events utilizing high-dimensional sensor data. Through the evaluation on real-world datasets, we demonstrate the superiority of HSED over state-of-the-art anomaly detection models. HSED can significantly enhance the efficiency, adaptability and reliability of IoTs and avoid potential risks of economic losses by IoT failures.

Multi-source Inductive Knowledge Graph Transfer

Multi-source Inductive Knowledge Graph Transfer Large-scale information systems, such as knowledge graphs (KGs), enterprise system networks, often exhibit dynamic and complex activities. Recent research has shown that formalizing these information systems as graphs can effectively characterize the entities (nodes) and their relationships (edges). Transferring knowledge from existing well-curated source graphs can help construct the target graph of newly-deployed systems faster and better which no doubt will benefit downstream tasks such as link prediction and anomaly detection for new systems. However, current graph transferring methods are either based on a single source, which does not sufficiently consider multiple available sources, or not selectively learns from these sources. In this paper, we propose MSGT-GNN, a graph knowledge transfer model for efficient graph link prediction from multiple source graphs. MSGT-GNN consists of two components: the Intra-Graph Encoder, which embeds latent graph features of system entities into vectors, and the graph transferor, which utilizes graph attention mechanism to learn and optimize the embeddings of corresponding entities from multiple source graphs, in both node level and graph level. Experimental results on multiple real-world datasets from various domains show that MSGT-GNN outperforms other baseline approaches in the link prediction and demonstrate the merit of attentive graph knowledge transfer and the effectiveness of MSGT-GNN.

You Are What and Where You Are: Graph Enhanced Attention Network for Explainable POI Recommendation

Point-of-interest (POI) recommendation is an emerging area of research on location-based social networks to analyze user behaviors and contextual check-in information. For this problem, existing approaches, with shallow or deep architectures, have two major drawbacks. First, for these approaches, the attributes of individuals have been largely ignored. Therefore, it would be hard, if not impossible, to gather sufficient user attribute features to have complete coverage of possible motivation factors. Second, most existing models preserve the information of users or POIs by latent representations without explicitly highlighting salient factors or signals. Consequently, the trained models with unjustifiable parameters provide few persuasive rationales to explain why users favor or dislike certain POIs and what really causes a visit. To overcome these drawbacks, we propose GEAPR, a POI recommender that is able to interpret the POI prediction in an end-to-end fashion. Specifically, GEAPR learns user representations by aggregating different factors, such as structural context, neighbor impact, user attributes, and geolocation influence. GEAPR takes advantage of a triple attention mechanism to quantify the influences of different factors for each resulting recommendation and performs a thorough analysis of the model interpretability. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed model. GEAPR is deployed and under test on an internal web server. An example interface is presented to showcase its application on explainable POI recommendation.

Towards Robustness of Deep Neural Networks via Networks via Regularization

Recent studies have demonstrated the vulnerability of deep neural networks against adversarial examples. In-spired by the observation that adversarial examples often lie outside the natural image data manifold and the intrinsic dimension of image data is much smaller than its pixel space dimension, we propose to embed high-dimensional input images into a low-dimensional space and apply regularization on the embedding space to push the adversarial examples back to the manifold. The proposed framework is called Embedding Regularized Classifier (ER-Classifier), which improves the adversarial robustness of the classifier through embedding regularization. Besides improving classification accuracy against adversarial examples, the framework can be combined with detection methods to detect adversarial examples. Experimental results on several benchmark datasets show that, our proposed framework achieves good performance against strong adversarial at-tack methods.

Robust Graph Representation Learning via Neural Sparsification

Graph representation learning serves as the core of important prediction tasks, ranging from product recommendation to fraud detection. Reallife graphs usually have complex information in the local neighborhood, where each node is described by a rich set of features and connects to dozens or even hundreds of neighbors. Despite the success of neighborhood aggregation in graph neural networks, task-irrelevant information is mixed into nodes’ neighborhood, making learned models suffer from sub-optimal generalization performance. In this paper, we present NeuralSparse, a supervised graph sparsification technique that improves generalization power by learning to remove potentially task-irrelevant edges from input graphs. Our method takes both structural and nonstructural information as input, utilizes deep neural networks to parameterize sparsification processes, and optimizes the parameters by feedback signals from downstream tasks. Under the NeuralSparse framework, supervised graph sparsification could seamlessly connect with existing graph neural networks for more robust performance. Experimental results on both benchmark and private datasets show that NeuralSparse can yield up to 7.2% improvement in testing accuracy when working with existing graph neural networks on node classification tasks.

Self-Attentive Attributed Network Embedding Through Adversarial Learning

Network embedding aims to learn the low-dimensional representations/embeddings of vertices which preserve the structure and inherent properties of the networks. The resultant embeddings are beneficial to downstream tasks such as vertex classification and link prediction. A vast majority of real-world networks are coupled with a rich set of vertex attributes, which could be potentially complementary in learning better embeddings. Existing attributed network embedding models, with shallow or deep architectures, typically seek to match the representations in topology space and attribute space for each individual vertex by assuming that the samples from the two spaces are drawn uniformly. The assumption, however, can hardly be guaranteed in practice. Due to the intrinsic sparsity of sampled vertex sequences and incompleteness in vertex attributes, the discrepancy between the attribute space and the network topology space inevitably exists. Furthermore, the interactions among vertex attributes, a.k.a cross features, have been largely ignored by existing approaches. To address the above issues, in this paper, we propose Nettention, a self-attentive network embedding approach that can efficiently learn vertex embeddings on attributed network. Instead of sample-wise optimization, Nettention aggregates the two types of information through minimizing the difference between the representation distributions in the low-dimensional topology and attribute spaces. The joint inference is encapsulated in a generative adversarial training process, yielding better generalization performance and robustness. The learned distributions consider both locality-preserving and global reconstruction constraints which can be inferred from the learning of the adversarially regularized autoencoders. Additionally, a multi-head self-attention module is developed to explicitly model the attribute interactions. Extensive experiments on benchmark datasets have verified the effectiveness of the proposed Nettention model on a variety of tasks, including vertex classification and link prediction.

Deep Learning IP Network Representations

We present DIP, a deep learning-based framework to learn structural properties of the Internet, such as node clustering or distance between nodes. Existing embedding-based approaches use linear algorithms on a single source of data, such as latency or hop count information, to approximate the position of a node in the Internet. In contrast, DIP computes low-dimensional representations of nodes that preserve structural properties and non-linear relationships across multiple, heterogeneous sources of structural information, such as IP, routing, and distance information. Using a large real-world data set, we show that DIP learns representations that preserve the real-world clustering of the associated nodes and predicts the distance between them more than 30% better than a mean-based approach. Furthermore, DIP accurately imputes hop count distance to unknown hosts (i.e., not used in training) given only their IP addresses and routable prefixes. Our framework is extensible to new data sources and applicable to a wide range of problems in network monitoring and security.