The University of California, San Diego (UC San Diego), established in 1960, is a public research university comprising 12 undergraduate, graduate, and professional schools, as well as eight undergraduate residential colleges. It operates numerous organized research units, including those at the Scripps Institution of Oceanography, and is recognized for its extensive research activities. We have collaborated with UC San Diego on multimodal AI research, focusing on leveraging unlabeled data and pretraining strategies for vision-language tasks. Our joint work advances scalable AI systems capable of understanding complex, real-world inputs. Please read about our latest news and collaborative publications with the University of California, San Diego.

Posts

iFinder: Structured Zero-Shot Vision-Based LLM Grounding for Dash-Cam Video Reasoning

Grounding large language models (LLMs) in domain-specific tasks like post-hoc dash-cam driving video analysis is challenging due to their general-purpose training and lack of structured inductive biases. As vision is often the sole modality available for such analysis (i.e. no LiDAR, GPS, etc.), existing video-basedvision-language models (V-VLMs) struggle with spatial reasoning, causal inference, and explainability of events in the input video. To this end, we introduce iFinder, a structured semantic grounding framework that decouples perception from reasoning by translating dash-cam videos into a hierarchical, interpretable data structure for LLMs. iFinder operates as a modular, training-free pipeline that employs pretrained vision models to extract critical cues—object pose, lane positions, and object trajectories—which are hierarchically organized into frame and video-level structures. Combined with a three-block prompting strategy, it enables step-wise, grounded reasoning for the LLM to refine a peer V-VLM’s outputs and provide accurate reasoning. Evaluations on four public dash-cam video benchmarks show that iFinder’s proposed grounding with domain-specific cues—especially object orientation and global context—significantly outperforms end-to-end V-VLMs on four zero-shot driving benchmarks, with up to 39% gains in accident reasoning accuracy. By grounding LLMs with driving domain-specific representations, iFinder offers a zero-shot, interpretable, and reliable alternativeto end-to-end V-VLMs for post-hoc driving video understanding

NeurIPS 2025 in San Diego from November 30th to December 5th, 2025

NEC Laboratories America is heading to San Diego for NeurIPS 2025, where our researchers will present cutting-edge work spanning optimization, AI systems, language modeling, and trustworthy machine learning. This year’s lineup highlights breakthroughs in areas like multi-agent coordination, scalable training, efficient inference, and techniques for detecting LLM-generated text. Together, these contributions reflect our commitment to advancing fundamental science while building real-world solutions that strengthen industry and society. We’re excited to join the global AI community in San Diego from November 30 to December 5 to share our latest innovations.

DWIM: Towards Tool-aware Visual Reasoning via Discrepancy-aware Workflow Generation & Instruct-Masking Tuning

Visual reasoning (VR), which is crucial in many fields for enabling human-like visual understanding, remains highly challenging. Recently, compositional visual reasoning approaches, which leverage the reasoning abilities of large language models (LLMs) with integrated tools to solve problems, have shown promise as more effective strategies than end-to-end VR methods. However, these approaches face limitations, as frozen LLMs lack tool awareness in VR, leading to performance bottlenecks. While leveraging LLMs for reasoning is widely used in other domains, they are not directly applicable to VR due to limited training data, imperfect tools that introduce errors and reduce data collection efficiency in VR, and challenges in fine-tuning on noisy workflows. To address these challenges, we propose DWIM: i) Discrepancy-aware training Workflow generation, which assesses tool usage and extracts more viable workflows for training; and ii) Instruct-Masking fine-tuning, which guides the model to only clone effective actions, enabling the generation of more practical solutions. Our experiments demonstrate that DWIM achieves state-of-the-art performance across various VR tasks, exhibiting strong generalization on multiple widely used datasets.

iFinder: Structured Zero-Shot Vision-Based LLM Grounding for Dash-Cam Video Reasoning

Grounding large language models (LLMs) in domain-specific tasks like post-hoc dash-cam driving video analysis is challenging due to their general-purpose training and lack of structured inductive biases. As vision is often the sole modality available for such analysis (i.e., no LiDAR, GPS, etc.), existing video-based vision-language models (V-VLMs) struggle with spatial reasoning, causal inference, and explainability of events in the input video. To this end, we introduce iFinder, a structured semantic grounding framework that decouples perception from reasoning by translating dash-cam videos into a hierarchical, interpretable data structure for LLMs. iFinder operates as a modular, training-free pipeline that employs pretrained vision models to extract critical cues — object pose, lane positions, and object trajectories — which are hierarchically organized into frame- and video-level structures. Combined with a three-block prompting strategy, it enables step-wise, grounded reasoning for the LLM to refine a peer V-VLM’s outputs and provide accurate reasoning. Evaluations on four public dash-cam video benchmarks show that iFinder’s proposed grounding with domain-specific cues, especially object orientation and global context, significantly outperforms end-to-end V-VLMs on four zero-shot driving benchmarks, with up to 39% gains in accident reasoning accuracy. By grounding LLMs with driving domain-specific representations, iFinder offers a zero-shot, interpretable, and reliable alternative to end-to-end V-VLMs for post-hoc driving video understanding.

ST-VLM: Kinematic Instruction Tuning for Spatio-Temporal Reasoning in Vision-Language Models

Spatio-temporal reasoning is essential in understanding real-world environments in various fields, eg, autonomous driving and sports analytics. Recent advances have improved the spatial reasoning ability of Vision-Language Models (VLMs) by introducing large-scale data, but these models still struggle to analyze kinematic elements like traveled distance and speed of moving objects. To bridge this gap, we construct a spatio-temporal reasoning dataset and benchmark involving kinematic instruction tuning, referred to as STKit and STKit-Bench. They consist of real-world videos with 3D annotations, detailing object motion dynamics: traveled distance, speed, movement direction, inter-object distance comparisons, and relative movement direction. To further scale such data construction to videos without 3D labels, we propose an automatic pipeline to generate pseudo-labels using 4D reconstruction in real-world scale. With our kinematic instruction tuning data for spatio-temporal reasoning, we present ST-VLM, a VLM enhanced for spatio-temporal reasoning, which exhibits outstanding performance on STKit-Bench. Furthermore, we show that ST-VLM generalizes robustly across diverse domains and tasks, outperforming baselines on other spatio-temporal benchmarks (eg, ActivityNet, TVQA+). Finally, by integrating learned spatio-temporal reasoning with existing abilities, ST-VLM enables complex multi-step reasoning

Foundational Vision-LLM for AI Linkage and Orchestration

We propose a vision-LLM framework for automating development and deployment of computer vision solutions for pre-defined or custom-defined tasks. A foundational layer is proposed with a code-LLM AI orchestrator self-trained with reinforcement learning to create Python code based on its understanding of a novel user-defined task, together with APIs, documentation and usage notes of existing task-specific AI models. Zero-shot abilities in specific domains are obtained through foundational vision-language models trained at a low compute expense leveraging existing computer vision models and datasets. An engine layer is proposed which comprises of several task-specific vision-language engines which can be compositionally utilized. An application-specific layer is proposed to improve performance in customer-specific scenarios, using novel LLM-guided data augmentation and question decomposition, besides standard fine-tuning tools. We demonstrate a range of applications including visual AI assistance, visual conversation, law enforcement, mobility, medical image reasoning and remote sensing.

Taming Self-Training for Open-Vocabulary Object Detection

Recent studies have shown promising performance in open-vocabulary object detection (OVD) by utilizing pseudo labels (PLs) from pretrained vision and language models (VLMs). However, teacher-student self-training, a powerful and widely used paradigm to leverage PLs, is rarely explored for OVD.

LidaRF: Delving into Lidar for Neural Radiance Field on Street Scenes

Photorealistic simulation plays a crucial role in applications such as autonomous driving, where advances in neural radiance fields (NeRFs) may allow better scalability through the automatic creation of digital 3D assets. However, reconstruction quality suffers on street scenes due to largely collinear camera motions and sparser samplings at higher speeds. On the other hand, the application often demands rendering from camera views that deviate from the inputs to accurately simulate behaviors like lane changes. In this paper, we propose several insights that allow a better utilization of Lidar data to improve NeRF quality on street scenes. First, our framework learns a geometric scene representation from Lidar, which are fused with the implicit grid-based representation for radiance decoding, thereby supplying strongergeometric information offered by explicit point cloud. Second, we put forth a robust occlusion-aware depth supervision scheme, which allows utilizing densified Lidar points by accumulation. Third, we generate augmented training views from Lidar points for further improvement. Our insights translate to largely improved novel view synthesis under real driving scenes.

AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving

Autonomous vehicle (AV) systems rely on robust perception models as a cornerstone of safety assurance. However, objects encountered on the road exhibit a long-tailed distribution, with rare or unseen categories posing challenges to a deployed perception model. This necessitates an expensive process of continuously curating and annotating data with significant human effort. We propose to leverage recent advances in vision-language and large language models to design an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios. This process operates iteratively, allowing for continuous self-improvement of the model. We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method’s superior performance at a reduced cost.

Generating Enhanced Negatives for Training Language-Based Object Detectors

The recent progress in language-based open-vocabulary object detection can be largely attributed to finding better ways of leveraging large-scale data with free-form text annotations. Training such models with a discriminative objective function has proven successful, but requires good positive and negative samples.