The University of Houston (UH), established in 1927, is a public research university located in Houston, Texas. It began as Houston Junior College and has grown into a significant institution, offering a wide range of academic programs and contributing to the intellectual and economic landscape of the region. We have partnered with the University of Houston on research involving machine learning robustness, adversarial resilience, and multimodal data fusion. Our collaboration supports applications in industrial automation, security, and real-time decision systems. Please read about our latest news and collaborative publications with the University of Houston.

Posts

Harnessing Vision Models for Time Series Analysis: A Survey

Time series analysis has witnessed the inspiring development from traditional autoregressive models, deep learning models, to recent Transformers and Large Language Models (LLMs). Efforts in leveraging vision models for time series analysis have also been made along the way but are less visible to the community due to the predominant research on sequence modeling in this domain. However, the discrepancy between continuous time series and the discrete token space of LLMs, and the challenges in explicitly modeling the correlations of variates in multivariate time series have shifted some research attentions to the equally successful Large Vision Models (LVMs) and Vision Language Models (VLMs). To fill the blank in the existing literature, this survey discusses the advantages of vision models over LLMs in time series analysis. It provides a comprehensive and in-depth overview of the existing methods, with dual views of detailed taxonomy that answer the key research questions including how to encode time series as images and how to model the imaged time series for various tasks. Additionally, we address the challenges in the pre- and post-processing steps involved in this framework and outline future directions to further advance time series analysis with vision models.

Multi-modal Time Series Analysis: A Tutorial and Survey

Multi-modal time series analysis has recently emerged as a prominent research area, driven by the increasing availability of diverse data modalities, such as text, images, and structured tabular data from real-world sources. However, effective analysis of multi-modal time series is hindered by data heterogeneity, modality gap, misalignment, and inherent noise. Recent advancements in multi-modal time series methods have exploited the multi-modal context via cross-modal interactions based on deep learning methods, significantly enhancing various downstream tasks. In this tutorial and survey, we present a systematic and up-to-date overview of multi-modal time series datasets and methods. We first state the existing challenges of multi-modal time series analysis and our motivations, with a brief introduction of preliminaries. Then, we summarize the general pipeline and categorize existing methods through a unified cross-modal interaction framework encompassing fusion, alignment, and transference at different levels (i.e., input, intermediate, output), where key concepts and ideas are highlighted. We also discuss the real-world applications of multi-modal analysis for both standard and spatial time series, tailored to general and specific domains. Finally, we discuss future research directions to help practitioners explore and exploit multi-modal time series. The up-to-date resources are provided in the GitHub repository. https://github.com/UConn-DSIS/Multi-modal-Time-Series-Analysis.

Exploring Multi-Modal Data with Tool-Augmented LLM Agents for Precise Causal Discovery

Causal discovery is an imperative foundation for decision-making across domains, such as smart health, AI for drug discovery and AIOps. Traditional statistical causal discovery methods, while well-established, predominantly rely on observational data and often overlook the semantic cues inherent in cause-and-effect relationships. The advent of Large Language Models (LLMs) has ushered in an affordable way of leveraging the semantic cues for knowledge-driven causal discovery, but the development of LLMs for causal discovery lags behind other areas, particularly in the exploration of multimodal data. To bridge the gap, we introduce MATMCD, a multi-agent system powered by tool-augmented LLMs. MATMCD has two key agents: a Data Augmentation agent that retrieves and processes modality-augmented data, and a Causal Constraint agent that integrates multi-modal data for knowledge-driven reasoning. The proposed design of the inner-workings ensures successful cooperation of the agents. Our empirical study across seven datasets suggests the significant potential of multi-modality enhanced causal discovery

Anomalous Event Sequence Detection

Anomaly detection has been widely applied in modern data-driven security applications to detect abnormal events/entities that deviate from the majority. However, less work has been done in terms of detecting suspicious event sequences/paths, which are better discriminators than single events/entities for distinguishing normal and abnormal behaviors in complex systems such as cyber-physical systems. A key and challenging step in this endeavor is how to discover those abnormal event sequences from millions of system event records in an efficient and accurate way. To address this issue, we propose NINA, a network diffusion-based algorithm for identifying anomalous event sequences. Experimental results on both static and streaming data show that NINA is efficient (processes about 2 million records per minute) and accurate.

A Deep Spatio-Temporal Fuzzy Neural Network for Passenger Demand Prediction

In spite of its importance, passenger demand prediction is a highly challenging problem, because the demand is simultaneously influenced by the complex interactions among many spatial and temporal factors and other external factors such as weather. To address this problem, we propose a Spatio-TEmporal Fuzzy neural Network (STEF-Net) to accurately predict passenger demands incorporating the complex interactions of all known important factors. We design an end-to-end learning framework with different neural networks modeling different factors. Specifically, we propose to capture spatio-temporal feature interactions via a convolutional long short-term memory network and model external factors via a fuzzy neural network that handles data uncertainty significantly better than deterministic methods. To keep the temporal relations when fusing two networks and emphasize discriminative spatio-temporal feature interactions, we employ a novel feature fusion method with a convolution operation and an attention layer. As far as we know, our work is the first to fuse a deep recurrent neural network and a fuzzy neural network to model complex spatial-temporal feature interactions with additional uncertain input features for predictive learning. Experiments on a large-scale real-world dataset show that our model achieves more than 10% improvement over the state-of-the-art approaches.

Collaborative Alert Ranking for Anomaly Detection

Given a large number of low-quality heterogeneous categorical alerts collected from an anomaly detection system, how to characterize the complex relationships between different alerts and deliver trustworthy rankings to end users? While existing techniques focus on either mining alert patterns or filtering out false positive alerts, it can be more advantageous to consider the two perspectives simultaneously in order to improve detection accuracy and better understand abnormal system behaviors. In this paper, we propose CAR, a collaborative alert ranking framework that exploits both temporal and content correlations from heterogeneous categorical alerts. CAR first builds a hierarchical Bayesian model to capture both short-term and long-term dependencies in each alert sequence. Then, an entity embedding-based model is proposed to learn the content correlations between alerts via their heterogeneous categorical attributes. Finally, by incorporating both temporal and content dependencies into a unified optimization framework, CAR ranks both alerts and their corresponding alert patterns. Our experiments-using both synthetic and real-world enterprise security alert data-show that CAR can accurately identify true positive alerts and successfully reconstruct the attack scenarios at the same time.