Washington State University (WSU), founded in 1890, is a top-tier public research university and the state’s land-grant institution. With five campuses, WSU’s mission is to improve the quality of life through its comprehensive academic programs and extensive research endeavors. NEC Labs America and Washington State University work together on energy-aware networking, predictive grid analytics, and demand-side AI modeling for intelligent energy systems. Please read about our latest news and collaborative publications with Washington State University.

Posts

Structural Temporal Graph Neural Networks for Anomaly Detection in Dynamic Graphs

Detecting anomalies in dynamic graphs is a vital task, with numerous practical applications in areas such as security, finance, and social media. Existing network embedding based methods have mostly focused on learning good node representations, whereas largely ignoring the subgraph structural changes related to the target nodes in a given time window. In this paper, we propose StrGNN, an end-to-end structural temporal Graph Neural Network model for detecting anomalous edges in dynamic graphs. In particular, we first extract the h-hop enclosing subgraph centered on the target edge and propose a node labeling function to identify the role of each node in the subgraph. Then, we leverage the graph convolution operation and Sortpooling layer to extract the fixed-size feature from each snapshot/timestamp. Based on the extracted features, we utilize the Gated Recurrent Units to capture the temporal information for anomaly detection. We fully implement StrGNN and deploy it into a real enterprise security system, and it greatly helps detect advanced threats and optimize the incident response. Extensive experiments on six benchmark datasets also demonstrate the effectiveness of StrGNN.

Data-Driven Day-Ahead PV Estimation Using Hybrid Deep Learning

Ongoing smart grid activities and associated automation resulted in rich set of data. These data can be utilized for monitoring and estimation of real time photovoltaic (PV) generation. Inherent variability in PV and related impact on power systems is a challenging problem. Improving the accuracy of PV generation estimation is beneficial for both the PV owners and the grid operators. Recently, deep learning algorithms possible by the availability of data have shown its advantages for time series estimation; however, its application on PV generation estimation is still in the early stage. In this paper, a hybrid estimation model with a combination of long-short-term-memory network (LSTM) and persistence model (PM) is developed to provide day-ahead PV estimation at 15-minute time interval with high accuracy and robustness. Simulation results show the superior performance of the proposed method over existing methods for most of the test c

TGNet: Learning to Rank Nodes in Temporal Graphs

Node ranking in temporal networks are often impacted by heterogeneous context from node content, temporal, and structural dimensions. This paper introduces TGNet , a deep-learning framework for node ranking in heterogeneous temporal graphs. TGNet utilizes a variant of Recurrent Neural Network to adapt context evolution and extract context features for nodes. It incorporates a novel influence network to dynamically estimate temporal and structural influence among nodes over time. To cope with label sparsity, it integrates graph smoothness constraints as a weak form of supervision. We show that the application of TGNet is feasible for large-scale networks by developing efficient learning and inference algorithms with optimization techniques. Using real-life data, we experimentally verify the effectiveness and efficiency of TGNet techniques. We also show that TGNet yields intuitive explanations for applications such as alert detection and academic impact ranking, as verified by our case study.

Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection

Unsupervised anomaly detection on multi- or high-dimensional data is of great importance in both fundamental machine learning research and industrial applications, for which density estimation lies at the core. Although previous approaches based on dimensionality reduction followed by density estimation have made fruitful progress, they mainly suffer from decoupled model learning with inconsistent optimization goals and incapability of preserving essential information in the low-dimensional space. In this paper, we present a Deep Autoencoding Gaussian Mixture Model (DAGMM) for unsupervised anomaly detection. Our model utilizes a deep autoencoder to generate a low-dimensional representation and reconstruction error for each input data point, which is further fed into a Gaussian Mixture Model (GMM). Instead of using decoupled two-stage training and the standard Expectation-Maximization (EM) algorithm, DAGMM jointly optimizes the parameters of the deep autoencoder and the mixture model simultaneously in an end-to-end fashion, leveraging a separate estimation network to facilitate the parameter learning of the mixture model. The joint optimization, which well balances autoencoding reconstruction, density estimation of latent representation, and regularization, helps the autoencoder escape from less attractive local optima and further reduce reconstruction errors, avoiding the need of pre-training. Experimental results on several public benchmark datasets show that, DAGMM significantly outperforms state-of-the-art anomaly detection techniques, and achieves up to 14% improvement based on the standard F1 score.