Washington State University (WSU), founded in 1890, is a top-tier public research university and the state’s land-grant institution. With five campuses, WSU’s mission is to improve the quality of life through its comprehensive academic programs and extensive research endeavors. NEC Labs America and Washington State University work together on energy-aware networking, predictive grid analytics, and demand-side AI modeling for intelligent energy systems. Please read about our latest news and collaborative publications with Washington State University.

Posts

Data-Driven Day-Ahead PV Estimation Using Hybrid Deep Learning

Ongoing smart grid activities and associated automation resulted in rich set of data. These data can be utilized for monitoring and estimation of real time photovoltaic (PV) generation. Inherent variability in PV and related impact on power systems is a challenging problem. Improving the accuracy of PV generation estimation is beneficial for both the PV owners and the grid operators. Recently, deep learning algorithms possible by the availability of data have shown its advantages for time series estimation; however, its application on PV generation estimation is still in the early stage. In this paper, a hybrid estimation model with a combination of long-short-term-memory network (LSTM) and persistence model (PM) is developed to provide day-ahead PV estimation at 15-minute time interval with high accuracy and robustness. Simulation results show the superior performance of the proposed method over existing methods for most of the test c

Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection

Unsupervised anomaly detection on multi- or high-dimensional data is of great importance in both fundamental machine learning research and industrial applications, for which density estimation lies at the core. Although previous approaches based on dimensionality reduction followed by density estimation have made fruitful progress, they mainly suffer from decoupled model learning with inconsistent optimization goals and incapability of preserving essential information in the low-dimensional space. In this paper, we present a Deep Autoencoding Gaussian Mixture Model (DAGMM) for unsupervised anomaly detection. Our model utilizes a deep autoencoder to generate a low-dimensional representation and reconstruction error for each input data point, which is further fed into a Gaussian Mixture Model (GMM). Instead of using decoupled two-stage training and the standard Expectation-Maximization (EM) algorithm, DAGMM jointly optimizes the parameters of the deep autoencoder and the mixture model simultaneously in an end-to-end fashion, leveraging a separate estimation network to facilitate the parameter learning of the mixture model. The joint optimization, which well balances autoencoding reconstruction, density estimation of latent representation, and regularization, helps the autoencoder escape from less attractive local optima and further reduce reconstruction errors, avoiding the need of pre-training. Experimental results on several public benchmark datasets show that, DAGMM significantly outperforms state-of-the-art anomaly detection techniques, and achieves up to 14% improvement based on the standard F1 score.