Yuanzhou Chen is a Ph.D. student at University of California, Los Angeles.

Posts

Human Texts Are Outliers: Detecting LLM-generated Texts via Out-of-distribution Detection

The rapid advancement of large language models (LLMs) such as ChatGPT, DeepSeek, and Claude has significantly increased the presence of AI-generated text in digital communication. This trend has heightened the need for reliable detection methods to distinguish between human-authored and machine-generated content. Existing approaches both zero-shot methods and supervised classifiers largely conceptualize this task as a binary classification problem, often leading to poor generalization across domains and models. In this paper, we argue that such a binary formulation fundamentally mischaracterizes the detection task by assuming a coherent representation of human-written texts. In reality, human texts do not constitute a unified distribution, and their diversity cannot be effectively captured through limited sampling. This causes previous classifiers to memorize observed OOD characteristics rather than learn the essence of ‘non-ID’ behavior, limiting generalization to unseen human-authored inputs. Based on this observation, we propose reframing the detection task as an out-of-distribution (OOD) detection problem, treating human-written texts as distributional outliers while machine-generated texts are in-distribution (ID) samples. To this end, we develop a detection framework using one-class learning method including DeepSVDD and HRN, and score-based learning techniques such as energy-based method, enabling robust and generalizable performance. Extensive experiments across multiple datasets validate the effectiveness of our OOD-based approach. Specifically, the OOD-based method achieves 98.3% AUROC and AUPR with only 8.9% FPR95 on DeepFake dataset. Moreover, we test our detection framework on multilingual, attacked, and unseen-model and -domain text settings, demonstrating the robustness and generalizability of our framework. Code, pretrained weights, and demo will be released openly at https://github.com/cong-zeng/ood-llm-detect.

Humanizing the Machine: Proxy Attacks to Mislead LLM Detectors

The advent of large language models (LLMs) has revolutionized the field of text generation, producing outputs that closely mimic human-like writing. Although academic and industrial institutions have developed detectors to prevent the malicious usage of LLM-generated texts, other research has doubt about the robustness of these systems. To stress test these detectors, we introduce a humanized proxy-attack (HUMPA) strategy that effortlessly compromises LLMs, causing them to produce outputs that align with human-written text and mislead detection systems. Our method attacks the source model by leveraging a reinforcement learning (RL) fine-tuned humanized small language model (SLM) in the decoding phase. Through an in-depth analysis, we demonstrate that our attack strategy is capable of generating responses that are indistinguishable to detectors, preventing them from differentiating between machine-generated and human-written text. We conduct systematic evaluations on extensive datasets using proxy-attacked open-source models, including Llama2-13B, Llama3-70B, and Mixtral-8×7B in both white- and black-box settings. Our findings show that the proxy-attack strategy effectively deceives the leading detectors, resulting in an average AUROC drop of 70.4% across multiple datasets, with a maximum drop of 95.0% on a single dataset. Furthermore, in cross-discipline scenarios, our strategy also bypasses these detectors, leading to a significant relative decrease of up to 90.9%, while in cross-language scenario, the drop reaches 91.3%. Despite our proxy-attack strategy successfully bypassing the detectors with such significant relative drops, we find that the generation quality of the attacked models remains preserved, even within a modest utility budget, when compared to the text produced by the original, unattacked source model.

Improving Logits-based Detector without Logits from Black-box LLMs

The advent of Large Language Models (LLMs) has revolutionized text generation, producing outputs that closely mimic human writing. This blurring of lines between machine- and human-written text presents new challenges in distinguishing one from the other – a task further complicated by the frequent updates and closed nature of leading proprietary LLMs. Traditional logits-based detection methods leverage surrogate models for identifying LLM-generated content when the exact logits are unavailable from black-box LLMs. However, these methods grapple with the misalignment between the distributions of the surrogate and the often undisclosed target models, leading to performance degradation, particularly with the introduction of new, closed-source models. Furthermore, while current methodologies are generally effective when the source model is identified, they falter in scenarios where the model version remains unknown, or the test set comprises outputs from various source models. To address these limitations, we present Distribution-Aligned LLMs Detection (DALD), an innovative framework that redefines the state-of-the-art performance in black-box text detection even without logits from source LLMs. DALD is designed to align the surrogate model s distribution with that of unknown target LLMs, ensuring enhanced detection capability and resilience against rapid model iterations with minimal training investment. By leveraging corpus samples from publicly accessible outputs of advanced models such as ChatGPT, GPT-4, and Claude-3, DALD fine-tunes surrogate models to synchronize with unknown source model distributions effectively. Our approach performs SOTA in black-box settings on different advanced closed-source and open-source models. The versatility of our method enriches widely adopted zero-shot detection frameworks (DetectGPT, DNA-GPT, Fast-DetectGPT) with a plug-and-play enhancement feature. Extensive experiments validate that our methodology reliably secures high detection precision for LLM-generated text and effectively detects text from diverse model origins through a singular detector. Our method is also robust under the revised text attack and non-English texts.