Yuheng Chen NEC Labs America

Yuheng Chen


Optical Networking & Sensing


Field Trial of Cable Safety Protection and Road Traffic Monitoring over Operational 5G Transport Network with Fiber Sensing and On-Premise AI Technologies

We report the distributed-fiber-sensing field trial results over a 5G-transport-network. A standard communication fiber is used with real-time AI processing for cable self-protection, cable-cut threat assessment and road traffic monitoring in a long-term continuous test.

Vehicle Run-Off-Road Event Automatic Detection by Fiber Sensing Technology

We demonstrate a new application of fiber-optic-sensing and machine learning techniques for vehicle run-off-road events detection to enhance roadway safety and efficiency. The proposed approach achieves high accuracy in a testbed under various experimental conditions.

Field Trial of Abnormal Activity Detection and Threat Level Assessment with Fiber Optic Sensing for Telecom Infrastructure Protection

We report the field trial results of monitoring abnormal activities near deployed cable with fiber-optic-sensing technology for cable protection. Detection and position determination of abnormal events and evaluating the threat to the cable is realized.

Field Trial of Distributed Fiber Sensor Network Using Operational Telecom Fiber Cables as Sensing Media

We demonstrate fiber optic sensing systems in a distributed fiber sensor network built on existing telecom infrastructure to detect temperature, acoustic effects, vehicle traffic, etc. Measurements are also demonstrated with different network topologies and simultaneously sensing four fiber routes with one system.

New Methods for Non-Destructive Underground Fiber Localization using Distributed Fiber Optic Sensing Technology

To the best of our knowledge, we present the first underground fiber cable position detection methods using distributed fiber optic sensing (DFOS) technology. Meter level localization accuracy is achieved in the results.

Chemical profiling of red wines using surface-1 enhanced Raman spectroscopy (SERS)

In this study, we explored surface-enhanced Raman spectroscopy (SERS) for analyzing red wine through several facile sample preparations. These approaches involved the direct analysis of red wine with Raman spectroscopy and the direct incubation of red wine with silver nanoparticles (i.e., AgNPs) and a reproducible SERS substrate, the AgNP mirror, previously developed by our group. However, as previously reported for red wine analysis, the signals obtained through these approaches were either due to interference of the fluorescence exhibited by pigments or mainly attributed to a DNA fraction, adenine. Therefore, an innovative approach was developed using solvent extraction to provide more characteristic information that is beneficial for wine chemical profiling and discrimination. Signature peaks in the wine extract spectra were found to match those of condensed tannins, resveratrol, anthocyanins, gallic acid, and catechin, which indicated that SERS combined with extraction is an innovative method for profiling wine chemicals and overcoming well-known challenges in red wine analysis. Based on this approach, we have successfully differentiated three red wines and demonstrated the possible relation between the overall intensity of wine spectra and the ratings. Since the wine chemical profile is closely related to the grape species, wine quality, and wine authentication, the SERS approach to obtain rich spectral information from red wine could advance wine chemical analysis.

First Proof That Geographic Location on Deployed Fiber Cable Can Be Determined by Using OTDR Distance Based on Distributed Fiber Optical Sensing Technology

We demonstrated for the first time that geographic locations on deployed fiber cables can be determined accurately by using OTDR distances. The method involves vibration stimulation near deployed cables and distributed fiber optical sensing technology.

First Field Trial of Distributed Fiber Optical Sensing and High-Speed Communication Over an Operational Telecom Network

To the best of our knowledge, we present the first field trial of distributed fiber optical sensing (DFOS) and high-speed communication, comprising a coexisting system, over an operation telecom network. Using probabilistic-shaped (PS) DP-144QAM, a 36.8 Tb/s with an 8.28-b/s/Hz spectral efficiency (SE) (48-Gbaud channels, 50-GHz channel spacing) was achieved. Employing DFOS technology, road traffic, i.e., vehicle speed and vehicle density, were sensed with 98.5% and 94.5% accuracies, respectively, as compared to video analytics. Additionally, road conditions, i.e., roughness level was sensed with >85% accuracy via a machine learning based classifier.

First Field Trial of Sensing Vehicle Speed, Density, and Road Conditions by Using Fiber Carrying High Speed Data

For the first time, we demonstrate detection of vehicle speed, density, and road conditions using deployed fiber carrying high-speed data transmission, and prove carriers’ large-scale fiber infrastructures can also be used as ubiquitous sensing networks.