Entries by NEC Labs America

Temporal Context-aware Representation Learning for Question Routing

Question routing (QR) aims at recommending newly posted questions to the potential answerers who are most likely to answer the questions. The existing approaches that learn users’ expertise from their past question-answering activities usually suffer from challenges in two aspects: 1) multi-faceted expertise and 2) temporal dynamics in the answering behavior. This paper proposes a novel temporal context-aware model in multiple granularities of temporal dynamics that concurrently address the above challenges. Specifically, the temporal context-aware attention characterizes the answerer’s multi-faceted expertise in terms of the questions’ semantic and temporal information simultaneously. Moreover, the design of the multi-shift and multi-resolution module enables our model to handle temporal impact on different time granularities. Extensive experiments on six datasets from different domains demonstrate that the proposed model significantly outperforms competitive baseline models.

Interpretable Click-Through Rate Prediction through Hierarchical Attention

Click-through rate (CTR) prediction is a critical task in online advertising and marketing. For this problem, existing approaches, with shallow or deep architectures, have three major drawbacks. First, they typically lack persuasive rationales to explain the outcomes of the models. Unexplainable predictions and recommendations may be difficult to validate and thus unreliable and untrustworthy. In many applications, inappropriate suggestions may even bring severe consequences. Second, existing approaches have poor efficiency in analyzing high-order feature interactions. Third, the polysemy of feature interactions in different semantic subspaces is largely ignored. In this paper, we propose InterHAt that employs a Transformer with multi-head self-attention for feature learning. On top of that, hierarchical attention layers are utilized for predicting CTR while simultaneously providing interpretable insights of the prediction results. InterHAt captures high-order feature interactions by an efficient attentional aggregation strategy with low computational complexity. Extensive experiments on four public real datasets and one synthetic dataset demonstrate the effectiveness and efficiency of InterHAt.

Adversarial Learning of Privacy-Preserving and Task-Oriented Representations

Data privacy has emerged as an important issue as data-driven deep learning has been an essential component of modern machine learning systems. For instance, there could be a potential privacy risk of machine learning systems via the model inversion attack, whose goal is to reconstruct the input data from the latent representation of deep networks. Our work aims at learning a privacy-preserving and task-oriented representation to defend against such model inversion attacks. Specifically, we propose an adversarial reconstruction learning framework that prevents the latent representations decoded into original input data. By simulating the expected behavior of adversary, our framework is realized by minimizing the negative pixel reconstruction loss or the negative feature reconstruction (i.e., perceptual distance) loss. We validate the proposed method on face attribute prediction, showing that our method allows protecting visual privacy with a small decrease in utility performance. In addition, we show the utility-privacy trade-off with different choices of hyperparameter for negative perceptual distance loss at training, allowing service providers to determine the right level of privacy-protection with a certain utility performance. Moreover, we provide an extensive study with different selections of features, tasks, and the data to further analyze their influence on privacy protection.

First Field Trial of Distributed Fiber Optical Sensing and High-Speed Communication Over an Operational Telecom Network

To the best of our knowledge, we present the first field trial of distributed fiber optical sensing (DFOS) and high-speed communication, comprising a coexisting system, over an operation telecom network. Using probabilistic-shaped (PS) DP-144QAM, a 36.8 Tb/s with an 8.28-b/s/Hz spectral efficiency (SE) (48-Gbaud channels, 50-GHz channel spacing) was achieved. Employing DFOS technology, road traffic, i.e., vehicle speed and vehicle density, were sensed with 98.5% and 94.5% accuracies, respectively, as compared to video analytics. Additionally, road conditions, i.e., roughness level was sensed with >85% accuracy via a machine learning based classifier.

Detection of False Data Injection Attacks in Cyber-Physical Systems using Dynamic Invariants

Modern cyber-physical systems are increasingly complex and vulnerable to attacks like false data injection aimed at destabilizing and confusing the systems. We develop and evaluate an attack-detection framework aimed at learning a dynamic invariant network, data-driven temporal causal relationships between components of cyber-physical systems. We evaluate the relative performance in attack detection of the proposed model relative to traditional anomaly detection approaches. In this paper, we introduce Granger Causality based Kalman Filter with Adaptive Robust Thresholding (G-KART) as a framework for anomaly detection based on data-driven functional relationships between components in cyber-physical systems. In particular, we select power systems as a critical infrastructure with complex cyber-physical systems whose protection is an essential facet of national security. The system presented is capable of learning with or without network topology the task of detection of false data injection attacks in power systems. Kalman filters are used to learn and update the dynamic state of each component in the power system and in-turn monitor the component for malicious activity. The ego network for each node in the invariant graph is treated as an ensemble model of Kalman filters, each of which captures a subset of the node’s interactions with other parts of the network. We finally also introduce an alerting mechanism to surface alerts about compromised nodes.

Coordination of PV Smart Inverters Using Deep Reinforcement Learning for Grid Voltage Regulation

Increasing adoption of solar photovoltaic (PV) presents new challenges to modern power grid due to its variable and intermittent nature. Fluctuating outputs from PV generation can cause the grid violating voltage operation limits. PV smart inverters (SIs) provide a fast-response method to regulate voltage by modulating real and/or reactive power at the connection point. Yet existing local autonomous control scheme of SIs is based on local information without coordination, which can lead to suboptimal performance. In this paper, a deep reinforcement learning (DRL) based algorithm is developed and implemented for coordinating multiple SIs. The reward scheme of the DRL is carefully designed to ensure voltage operation limits of the grid are met with more effective utilization of SI reactive power. The proposed DRL agent for voltage control can learn its policy through interaction with massive offline simulations, and adapts to load and solar variations. The performance of the DRL agent is compared against the local autonomous control on the IEEE 37 node system with thousands of scenarios. The results show a properly trained DRL agent can intelligently coordinate different SIs for maintaining grid voltage within allowable ranges, achieving reduction of PV production curtailment, and decreasing system losses.

Contextual Grounding of Natural Language Entities in Images

In this paper, we introduce a contextual grounding approach that captures the context in corresponding text entities and image regions to improve the grounding accuracy. Specifically, the proposed architecture accepts pre-trained text token embeddings and image object features from an off-the-shelf object detector as input. Additional encoding to capture the positional and spatial information can be added to enhance the feature quality. There are separate text and image branches facilitating respective architectural refinements for different modalities. The text branch is pre-trained on a large-scale masked language modeling task while the image branch is trained from scratch. Next, the model learns the contextual representations of the text tokens and image objects through layers of high-order interaction respectively. The final grounding head ranks the correspondence between the textual and visual representations through cross-modal interaction. In the evaluation, we show that our model achieves the state-of-the-art grounding accuracy of 71.36% over the Flickr30K Entities dataset. No additional pre-training is necessary to deliver competitive results compared with related work that often requires task-agnostic and task-specific pre-training on cross-modal datasets. The implementation is publicly available at https://gitlab.com/necla-ml/grounding.

Progressive Processing of System-Behavioral Query

System monitoring has recently emerged as an effective way to analyze and counter advanced cyber attacks. The monitoring data records a series of system events and provides a global view of system behaviors in an organization. Querying such data to identify potential system risks and malicious behaviors helps security analysts detect and analyze abnormal system behaviors caused by attacks. However, since the data volume is huge, queries could easily run for a long time, making it difficult for system experts to obtain prompt and continuous feedback. To support interactive querying over system monitoring data, we propose ProbeQ, a system that progressively processes system-behavioral queries. It allows users to concisely compose queries that describe system behaviors and specify an update frequency to obtain partial results progressively. The query engine of ProbeQ is built based on a framework that partitions ProbeQ queries into sub-queries for parallel execution and retrieves partial results periodically based on the specified update frequency. We concretize the framework with three partition strategies that predict the workloads for sub-queries, where the adaptive workload partition strategy (AdWd) dynamically adjusts the predicted workloads for subsequent sub-queries based on the latest execution information. We evaluate the prototype system of ProbeQ on commonly used queries for suspicious behaviors over real-world system monitoring data, and the results show that the ProbeQ system can provide partial updates progressively (on average 9.1% deviation from the update frequencies) with only 1.2% execution overhead compared to the execution without progressive processing.

Multivariate Long-Term State Forecasting in Cyber-Physical Systems: A Sequence to Sequence Approach

Cyber-physical systems (CPS) are ubiquitous in several critical infrastructure applications. Forecasting the state of CPS, is essential for better planning, resource allocation and minimizing operational costs. It is imperative to forecast the state of a CPS multiple steps into the future to afford enough time for planning of CPS operation to minimize costs and component wear. Forecasting system state also serves as a precursor to detecting process anomalies and faults. Concomitantly, sensors used for data collection are commodity hardware and experience frequent failures resulting in periods with sparse or no data. In such cases, re-construction through imputation of the missing data sequences is imperative to alleviate data sparsity and enable better performance of down-stream analytic models. In this paper, we tackle the problem of CPS state forecasting and data imputation and characterize the performance of a wide array of deep learning architectures – unidirectional gated and non-gated recurrent architectures, sequence to sequence (Seq2Seq) architectures as well as bidirectional architectures – with a specific focus towards applications in CPS. We also study the impact of procedures like scheduled sampling and attention, on model training. Our results indicate that Seq2Seq models are superior to traditional step ahead forecasting models and yield an improvement of at least 28.5% for gated recurrent architectures and about 87.6% for non-gated architectures in terms of forecasting performance. We also notice that bidirectional models learn good representations for forecasting as well as for data imputation. Bidirectional Seq2Seq models show an average improvement of 17.6% in forecasting performance over their unidirectional counterparts. We also demonstrate the effect of employing an attention mechanism in the context of Seq2Seq architectures and find that it provides an average improvement of 57.12% in the case of unidirectional Seq2Seq architectures while causing a performance decline in the case of bidirectional Seq2Seq architectures. Finally, we also find that scheduled sampling helps in training better models that yield significantly lower forecasting error.

Self-Attentive Attributed Network Embedding Through Adversarial Learning

Network embedding aims to learn the low-dimensional representations/embeddings of vertices which preserve the structure and inherent properties of the networks. The resultant embeddings are beneficial to downstream tasks such as vertex classification and link prediction. A vast majority of real-world networks are coupled with a rich set of vertex attributes, which could be potentially complementary in learning better embeddings. Existing attributed network embedding models, with shallow or deep architectures, typically seek to match the representations in topology space and attribute space for each individual vertex by assuming that the samples from the two spaces are drawn uniformly. The assumption, however, can hardly be guaranteed in practice. Due to the intrinsic sparsity of sampled vertex sequences and incompleteness in vertex attributes, the discrepancy between the attribute space and the network topology space inevitably exists. Furthermore, the interactions among vertex attributes, a.k.a cross features, have been largely ignored by existing approaches. To address the above issues, in this paper, we propose Nettention, a self-attentive network embedding approach that can efficiently learn vertex embeddings on attributed network. Instead of sample-wise optimization, Nettention aggregates the two types of information through minimizing the difference between the representation distributions in the low-dimensional topology and attribute spaces. The joint inference is encapsulated in a generative adversarial training process, yielding better generalization performance and robustness. The learned distributions consider both locality-preserving and global reconstruction constraints which can be inferred from the learning of the adversarially regularized autoencoders. Additionally, a multi-head self-attention module is developed to explicitly model the attribute interactions. Extensive experiments on benchmark datasets have verified the effectiveness of the proposed Nettention model on a variety of tasks, including vertex classification and link prediction.