Entries by NEC Labs America

NodeMerge: Template Based Efficient Data Reduction For Big-Data Causality Analysis

Today’s enterprises are exposed to sophisticated attacks, such as Advanced Persistent Threats~(APT) attacks, which usually consist of stealthy multiple steps. To counter these attacks, enterprises often rely on causality analysis on the system activity data collected from a ubiquitous system monitoring to discover the initial penetration point, and from there identify previously unknown attack steps. However, one major challenge for causality analysis is that the ubiquitous system monitoring generates a colossal amount of data and hosting such a huge amount of data is prohibitively expensive. Thus, there is a strong demand for techniques that reduce the storage of data for causality analysis and yet preserve the quality of the causality analysis. To address this problem, in this paper, we propose NodeMerge, a template based data reduction system for online system event storage. Specifically, our approach can directly work on the stream of system dependency data and achieve data reduction on the read-only file events based on their access patterns. It can either reduce the storage cost or improve the performance of causality analysis under the same budget. Only with a reasonable amount of resource for online data reduction, it nearly completely preserves the accuracy for causality analysis. The reduced form of data can be used directly with little overhead. To evaluate our approach, we conducted a set of comprehensive evaluations, which show that for different categories of workloads, our system can reduce the storage capacity of raw system dependency data by as high as 75.7 times, and the storage capacity of the state-of-the-art approach by as high as 32.6 times. Furthermore, the results also demonstrate that our approach keeps all the causality analysis information and has a reasonably small overhead in memory and hard disk.

Unsupervised Cross Domain Distance Metric Adaptation with Feature Transfer Network

Unsupervised domain adaptation is an attractive avenue to enhance the performance of deep neural networks in a target domain, using labels only from a source domain. However, two predominant methods along this line, namely, domain divergence reduction learning and semi-supervised learning, are not readily applicable when the source and target domains do not share a common label space. This paper addresses the above scenario by learning a representation space that retains discriminative power on both the (labeled) source and (unlabeled) target domains while keeping the representations for the two domains well-separated. Inspired by a theoretical error bound on the target domain, we first reformulate the disjoint classification, where the source and target domains correspond to non-overlapping class labels, to a verification task. To handle both within-domain and cross-domain verification tasks, we propose a Feature Transfer Network (FTN) that separates the target features from the source features while simultaneously aligning the target features with a transformed source feature space. Moreover, we present a non-parametric variation of multi-class entropy minimization loss to further boost the discriminative power of FTNs on the target domain. In experiments, we demonstrate the effectiveness of FTNs through state-of-the-art performances on a cross-ethnicity face recognition problem.

Learning Gibbs-Regularized Pushforward Density Estimators with a Symmetric KL Objective

We claim that there is currently no satisfactory way to regularize a generative adversarial network (GAN): neither the generator nor discriminator is particularly amenable to the imposition of inductive biases derived from domain knowledge. A generator is effectively a causal model of generation—one that usually bears no resemblance to the true generation process, which is most often unobserved or exceedingly difficult to model. Consider image generation: although it is plausible—e.g., from biological arguments—that convolutional neural networks constitute a good class of image classifiers, claiming CNNs are inherently well-suited to image generation is harder to justify. Likewise, it is clear that regularizing the discriminator is necessary to prevent trivial solutions; although recent methods have seen some success in applying generic smoothness regularizers to the discriminator [1, 5, 12], it is not obvious how to impose domain-specific structure on the discriminator in an optimal way

ELI: Empowering LTE with Interference Awareness in Unlicensed Spectrum

The advent of LTE into the unlicensed spectrum has necessitated the understanding of its operational efficiency when sharing spectrum with different radio access technologies. Our study reveals that LTE, owing to its inherent transmission characteristics, suffers significant performance degradation in the presence of interference caused by hidden terminals. This motivates the need for interference-awareness in LTE’s channel access in unlicensed spectrum. To address this problem, we propose ELI. ELI’s three-pronged solution equips the LTE base station with novel techniques to: (a) accurately detect and measure interference caused by hidden terminals, (b) collect interference statistics from clients across different channels with affordable overhead, and (c) leverage interference-awareness to improve its channel access performance. Our evaluations show that ELI can achieve 1.5-2x throughput gains over baseline schemes. Finally, ELI is LTE-LAA/MulteFire-standard compliant and can be deployed over the existing LTE-LAA implementation without any modifications.

Parametric t-Distributed Stochastic Exemplar-centered Embedding

Parametric embedding methods such as parametric t-distributed Stochastic Neighbor Embedding (pt-SNE) enables out-of-sample data visualization without further computationally expensive optimization or approximation. However, pt-SNE favors small mini-batches to train a deep neural network but large mini-batches to approximate its cost function involving all pairwise data point comparisons, and thus has difficulty in finding a balance. To resolve the conflicts, we present parametric t-distributed stochastic exemplar-centered embedding. Our strategy learns embedding parameters by comparing training data only with precomputed exemplars to indirectly preserve local neighborhoods, resulting in a cost function with significantly reduced computational and memory complexity. Moreover, we propose a shallow embedding network with high-order feature interactions for data visualization, which is much easier to tune but produces comparable performance in contrast to a deep feedforward neural network employed by pt-SNE. We empirically demonstrate, using several benchmark datasets, that our proposed method significantly outperforms pt-SNE in terms of robustness, visual effects, and quantitative evaluations.

Zero-Shot Object Detection

We introduce and tackle the problem of zero-shot object detection (ZSD), which aims to detect object classes which are not observed during training. We work with a challenging set of object classes, not restricting ourselves to similar and/or fine-grained categories as in prior works on zero-shot classification. We present a principled approach by first adapting visual-semantic embeddings for ZSD. We then discuss the problems associated with selecting a background class and motivate two background-aware approaches for learning robust detectors. One of these models uses a fixed background class and the other is based on iterative latent assignments. We also outline the challenge associated with using a limited number of training classes and propose a solution based on dense sampling of the semantic label space using auxiliary data with a large number of categories. We propose novel splits of two standard detection datasets – MSCOCO and VisualGenome, and present extensive empirical results in both the traditional and generalized zero-shot settings to highlight the benefits of the proposed methods. We provide useful insights into the algorithm and conclude by posing some open questions to encourage further research.