A Deep Learning Framework for Detecting and Localizing Abnormal Pedestrian Behaviors at Grade Crossings

This paper presents a deep learning-based framework to detect and localize the pedestrians’ anomaly behaviors in videos captured at the grade crossing. A skeleton detection and tracking algorithm are employed to capture the key point trajectories of body movements of the pedestrians. A deep recurrent neural network is applied to learn the normal patterns of pedestrians’ movements using dynamics skeleton trajectories features. An anomaly behaviors detection and localization algorithm are developed by analyzing each pedestrian’s reconstructed trajectories. In the experiments, a video dataset involving normal pedestrian behaviors is established by collecting data at multiple grade crossing spots with different camera angles. Then the proposed framework is trained on the dataset to learn the regularity patterns of normal pedestrians and localize the anomaly behaviors during the testing phase. To the best of our knowledge, it is the first attempt to analyze pedestrians’ behavior at a grade crossing. The experimental results show that the proposed framework can detect and localize the anomaly behaviors, such as squatting down, lingering, and other behaviors that may cause safety issues at the grade crossing. Our study also points out the direction for further improvement of the present development to meet the need for real-world applications.

CAT: Beyond Efficient Transformer for Content-Aware Anomaly Detection in Event Sequences

It is critical and important to detect anomalies in event sequences, which becomes widely available in many application domains. Indeed, various efforts have been made to capture abnormal patterns from event sequences through sequential pattern analysis or event representation learning. However, existing approaches usually ignore the semantic information of event content. To this end, in this paper, we propose a self-attentive encoder-decoder transformer framework, Content-Aware Transformer CAT, for anomaly detection in event sequences. In CAT, the encoder learns preamble event sequence representations with content awareness, and the decoder embeds sequences under detection into a latent space, where anomalies are distinguishable. Specifically, the event content is first fed to a content-awareness layer, generating representations of each event. The encoder accepts preamble event representation sequence, generating feature maps. In the decoder, an additional token is added at the beginning of the sequence under detection, denoting the sequence status. A one-class objective together with sequence reconstruction loss is collectively applied to train our framework under the label efficiency scheme. Furthermore, CAT is optimized under a scalable and efficient setting. Finally, extensive experiments on three real-world datasets demonstrate the superiority of CAT.

Towards Learning Disentangled Representations for Time Series

Promising progress has been made toward learning efficient time series representations in recent years, but the learned representations often lack interpretability and do not encode semantic meanings by the complex interactions of many latent factors. Learning representations that disentangle these latent factors can bring semantic-rich representations of time series and further enhance interpretability. However, directly adopting the sequential models, such as Long Short-Term Memory Variational AutoEncoder (LSTM-VAE), would encounter a Kullback?Leibler (KL) vanishing problem: the LSTM decoder often generates sequential data without efficiently using latent representations, and the latent spaces sometimes could even be independent of the observation space. And traditional disentanglement methods may intensify the trend of KL vanishing along with the disentanglement process, because they tend to penalize the mutual information between the latent space and the observations. In this paper, we propose Disentangle Time-Series, a novel disentanglement enhancement framework for time series data. Our framework achieves multi-level disentanglement by covering both individual latent factors and group semantic segments. We propose augmenting the original VAE objective by decomposing the evidence lower-bound and extracting evidence linking factorial representations to disentanglement. Additionally, we introduce a mutual information maximization term between the observation space to the latent space to alleviate the KL vanishing problem while preserving the disentanglement property. Experimental results on five real-world IoT datasets demonstrate that the representations learned by DTS achieve superior performance in various tasks with better interpretability.

T-Cell Receptor-Peptide Interaction Prediction with Physical Model Augmented Pseudo-Labeling

Predicting the interactions between T-cell receptors (TCRs) and peptides is crucial for the development of personalized medicine and targeted vaccine in immunotherapy. Current datasets for training deep learning models of this purpose remain constrained without diverse TCRs and peptides. To combat the data scarcity issue presented in the current datasets, we propose to extend the training dataset by physical modeling of TCR-peptide pairs. Specifically, we compute the docking energies between auxiliary unknown TCR-peptide pairs as surrogate training labels. Then, we use these extended example-label pairs to train our model in a supervised fashion. Finally, we find that the AUC score for the prediction of the model can be further improved by pseudo-labeling of such unknown TCR-peptide pairs (by a trained teacher model), and re-training the model with those pseudo-labeled TCR-peptide pairs. Our proposed method that trains the deep neural network with physical modeling and data-augmented pseudo-labeling improves over baselines in the available two datasets. We also introduce a new dataset that contains over 80,000 unknown TCR-peptide pairs with docking energy scores.

Rain Intensity Detection and Classification with Pre-existing Telecom Fiber Cables

For the first time, we demonstrate detection and classification of rain intensity using Distributed Acoustic Sensing (DAS). An artificial neural network was applied for rain intensity classification and high precision of over 96% was achieved.

Evolution of Fiber Infrastructure – From Data Transmission to Network Sensing

We review multiple use cases over deployed networks including co-existing sensing/data transmission, cable cut prevention and perimeter intrusion detection to realize telecom infrastructure can be sensing backbones instead of the sole function of data transmission.

Field Tests of Impulsive Acoustic Event Detection, Localization, and Classification Over Telecom Fiber Networks

We report distributed-fiber-optic-sensing results on impulsive acoustic events localization/classification over telecom networks. A deep-learning-based model was trained to classify starter-gun and fireworks signatures with high accuracy of > 99% using fiber-based-signal-enhancer and >97% using aerial coils.

Simultaneous Fiber Sensing and Communications

We review recent advances aimed at increasing the reach of distributed fiber optic sensing with simultaneous data transmission. We review two methods based on measurement of accumulated phase on telecom signals, and chirp-pulsed DAS with inline amplification and frequency diversity.

Template Matching Method with Distributed Acoustic Sensing Data and Simulation Data

We propose a new method to detect acoustic signals by matching distributed acoustic sensing data with simulation. In the simulation of the dynamic strain on an optical fiber, the optical fiber layouts and the gauge length are properly incorporated. We apply the proposed method to the acoustic-source localization and demonstrate the method localizes the source accurately even under the layouts which include the straight optical fiber for the sensing points with the large gauge-length settings.

Mosaic: Leveraging Diverse Reflector Geometries for Omnidirectional Around-Corner Automotive Radar

A large number of traffic collisions occur as a result of obstructed sight lines, such that even an advanced driver assistance system would be unable to prevent the crash. Recent work has proposed the use of around-the-corner radar systems to detect vehicles, pedestrians, and other road users in these occluded regions. Through comprehensive measurement, we show that these existing techniques cannot sense occluded moving objects in many important real-world scenarios. To solve this problem of limited coverage, we leverage multiple, curved reflectors to provide comprehensive coverage over the most important locations near an intersection. In scenarios where curved reflectors are insufficient, we evaluate the relative benefits of using additional flat planar surfaces. Using these techniques, we more than double the probability of detecting a vehicle near the intersection in three real urban locations and enable NLoS radar sensing using an entirely new class of reflectors.