StyleT2I: Towards Compositional and High-Fidelity Text-to-Image Synthesis

Although progress has been made for text-to-image synthesis, previous methods fall short of generalizing to unseen or underrepresented attribute compositions in the input text. Lacking compositionality could have severe implications for robustness and fairness, e.g., inability to synthesize the face images of underrepresented demographic groups. In this paper, we introduce a new framework, StyleT2I, to improve the compositionality of text-to-image synthesis. Specifically, we propose a CLIP-guided Contrastive Loss to better distinguish different compositions among different sentences. To further improve the compositionality, we design a novel Semantic Matching Loss and a Spatial Constraint to identify attributes’ latent directions for intended spatial region manipulations, leading to better disentangled latent representations of attributes. Based on the identified latent directions of attributes, we propose Compositional Attribute Adjustment to adjust the latent code, resulting in better compositionality of image synthesis. In addition, we leverage the l2 -norm regularization of identified latent directions (norm penalty) to strike a nice balance between image-text alignment and image fidelity. In the experiments, we devise a new dataset split and an evaluation metric to evaluate the compositionality of text-to-image synthesis models. The results show that StyleT2I outperforms previous approaches in terms of the consistency between the input text and synthesized images and achieves higher fidelity

Chimera: Context-Aware Splittable Deep Multitasking Models for Edge Intelligence

Design of multitasking deep learning models has mostly focused on improving the accuracy of the constituent tasks, but the challenges of efficiently deploying such models in a device-edge collaborative setup (that is common in 5G deployments) has not been investigated. Towards this end, in this paper, we propose an approach called Chimera 1 for training (done Offline) and deployment (done Online) of multitasking deep learning models that are splittable across the device and edge. In the offline phase, we train our multi-tasking setup such that features from a pre-trained model for one of the tasks (called the Primary task) are extracted and task-specific sub-models are trained to generate the other (Secondary) tasks’ outputs through a knowledge distillation like training strategy to mimic the outputs of pre-trained models for the tasks. The task-specific sub-models are designed to be significantly lightweight than the original pre-trained models for the Secondary tasks. Once the sub-models are trained, during deployment, for given deployment context, characterized by the configurations, we search for the optimal (in terms of both model performance and cost) deployment strategy for the generated multitasking model, through finding one or multiple suitable layer(s) for splitting the model, so that inference workloads are distributed between the device and the edge server and the inference is done in a collaborative manner. Extensive experiments on benchmark computer vision tasks demonstrate that Chimera generates splittable multitasking models that are at least ~ 3 x parameter efficient than the existing such models, and the end-to-end device-edge collaborative inference becomes ~ 1.35 x faster with our choice of context-aware splitting decisions.

Controllable Dynamic Multi-Task Architectures

Multi-task learning commonly encounters competition for resources among tasks, specifically when model capacity is limited. This challenge motivates models which allow control over the relative importance of tasks and total compute cost during inference time. In this work, we propose such a controllable multi-task network that dynamically adjusts its architecture and weights to match the desired task preference as well as the resource constraints. In contrast to the existing dynamic multi-task approaches that adjust only the weights within a fixed architecture, our approach affords the flexibility to dynamically control the total computational cost and match the user-preferred task importance better. We propose a disentangled training of two hyper networks, by exploiting task affinity and a novel branching regularized loss, to take input preferences and accordingly predict tree-structured models with adapted weights. Experiments on three multi-task benchmarks, namely PASCAL-Context, NYU-v2, and CIFAR-100, show the efficacy of our approach. Project page is available at https://www.nec-labs.com/-mas/DYMU.

Learning to Learn across Diverse Data Biases in Deep Face Recognition

Convolutional Neural Networks have achieved remarkable success in face recognition, in part due to the abundant availability of data. However, the data used for training CNNs is often imbalanced. Prior works largely focus on the long-tailed nature of face datasets in data volume per identity or focus on single bias variation. In this paper, we show that many bias variations such as ethnicity, head pose, occlusion and blur can jointly affect the accuracy significantly. We propose a sample level weighting approach termed Multi-variation Cosine Margin (MvCoM), to simultaneously consider the multiple variation factors, which orthogonally enhances the face recognition losses to incorporate the importance of training samples. Further, we leverage a learning to learn approach, guided by a held-out meta learning set and use an additive modeling to predict the MvCoM. Extensive experiments on challenging face recognition benchmarks demonstrate the advantages of our method in jointly handling imbalances due to multiple variations.

MM-TTA: Multi-Modal Test-Time Adaptation for 3D Semantic Segmentation

Test-time adaptation approaches have recently emerged as a practical solution for handling domain shift without access to the source domain data. In this paper, we propose and explore a new multi-modal extension of test-time adaptation for 3D semantic segmentation. We find that, directly applying existing methods usually results in performance instability at test time, because multi-modal input is not considered jointly. To design a framework that can take full advantage of multi-modality, where each modality provides regularized self-supervisory signals to other modalities, we propose two complementary modules within and across the modalities. First, Intra-modal Pseudo-label Generation (Intra-PG) is introduced to obtain reliable pseudo labels within each modality by aggregating information from two models that are both pre-trained on source data but updated with target data at different paces. Second, Inter-modal Pseudo-label Refinement (Inter-PR) adaptively selects more reliable pseudo labels from different modalities based on a proposed consistency scheme. Experiments demonstrate that our regularized pseudo labels produce stable self-learning signals in numerous multi-modal test-time adaptation scenarios for 3D semantic segmentation. Visit our project website at https://www.nec-labs.com/~mas/MM-TTA

On Generalizing Beyond Domains in Cross-Domain Continual Learning

Humans have the ability to accumulate knowledge of new tasks in varying conditions, but deep neural networks of-ten suffer from catastrophic forgetting of previously learned knowledge after learning a new task. Many recent methods focus on preventing catastrophic forgetting under the assumption of train and test data following similar distributions. In this work, we consider a more realistic scenario of continual learning under domain shifts where the model must generalize its inference to an unseen domain. To this end, we encourage learning semantically meaningful features by equipping the classifier with class similarity metrics as learning parameters which are obtained through Mahalanobis similarity computations. Learning of the backbone representation along with these extra parameters is done seamlessly in an end-to-end manner. In addition, we propose an approach based on the exponential moving average of the parameters for better knowledge distillation. We demonstrate that, to a great extent, existing continual learning algorithms fail to handle the forgetting issue under multiple distributions, while our proposed approach learns new tasks under domain shift with accuracy boosts up to 10% on challenging datasets such as DomainNet and OfficeHome.

Self-supervised Video Representation Learning with Cascade Positive Retrieval

Self-supervised video representation learning has been shown to effectively improve downstream tasks such as video retrieval and action recognition. In this paper, we present the Cascade Positive Retrieval (CPR) that successively mines positive examples w.r.t. the query for contrastive learning in a cascade of stages. Specifically, CPR exploits multiple views of a query example in different modalities, where an alternative view may help find another positive example dissimilar in the query view. We explore the effects of possible CPR configurations in ablations including the number of mining stages, the top similar example selection ratio in each stage, and progressive training with an incremental number of the final Top-k selection. The overall mining quality is measured to reflect the recall across training set classes. CPR reaches a median class mining recall of 83.3%, outperforming previous work by 5.5%. Implementation-wise, CPR is complementary to pretext tasks and can be easily applied to previous work. In the evaluation of pretraining on UCF101, CPR consistently improves existing work and even achieves state-of-the-art R@1 of 56.7% and 24.4% in video retrieval as well as 83.8% and 54.8% in action recognition on UCF101 and HMDB51. The code is available at https://github.com/necla-ml/CPR.

Weakly But Deeply Supervised Occlusion-Reasoned Parametric Road Layouts

We propose an end-to-end network that takes a single perspective RGB image of a complex road scene as input, to produce occlusion-reasoned layouts in perspective space as well as a parametric bird’s-eye-view (BEV) space. In contrast to prior works that require dense supervision such as semantic labels in perspective view, our method only requires human annotations for parametric attributes that are cheaper and less ambiguous to obtain. To solve this challenging task, our design is comprised of modules that incorporate inductive biases to learn occlusion-reasoning, geometric transformation and semantic abstraction, where each module may be supervised by appropriately transforming the parametric annotations. We demonstrate how our design choices and proposed deep supervision help achieve meaningful representations and accurate predictions. We validate our approach on two public datasets, KITTI and NuScenes, to achieve state-of-the-art results with considerably less human supervision.

Distributed Fiber Optic Sensors Placement for Infrastructure-as-a-Sensor

Recently, the distributed fiber optic sensing (DFOS) techniques have advanced rapidly. There emerges various types of DFOS sensors that can monitor physical parameters such as temperature, strain, and vibration. With these DFOS sensors deployed, the telecom networks are capable of offering additional services beyond communications, such as monitoring road traffic condition, monitoring utility pole health, monitoring city noise and accident, thus evolving to a new paradigm of Infrastructure-as-a-Sensor (IaaSr) or Network-as-a-Sensor (NaaSr). When telecom network carriers upgrade their infrastructures with DFOS sensors to provide such IaaSr/NaaSr services, there will arise a series of critical challenges: (1) where to place the DFOS sensors, and (2) how to provision the DFOS sensing fiber routes to cover the whole network infrastructures with the minimum number of DFOS sensors? We name this as the DFOS placement problem. In this paper, we prove that the DFOS placement problem is an NP-hard problem, and we analyze the upper bound of the number of DFOS sensors used. To facilitate the optimal solution, we formulate the DFOS placement problem with an Integer Linear Programming model that aims at minimizing the number of DFOS sensors used. Furthermore, we propose a cost-efficient heuristic solution, called Explore-and-Pick (EnP), which can achieve a close-to-optimal performance in a fast manner. We analyze the approximation ratio and the computational complexity of the proposed EnP algorithm. In addition, we conduct comprehensive simulations to evaluate the performance of the proposed solutions. Simulation results show that the EnP algorithm can outperform the baseline algorithm by 16% in average and 26% at best, and it achieves a performance that is close to the optimal result obtained by ILP.

SEED: Sound Event Early Detection via Evidential Uncertainty

Sound Event Early Detection (SEED) is an essential task in recognizing the acoustic environments and soundscapes. However, most of the existing methods focus on the offline sound event detection, which suffers from the over-confidence issue of early-stage event detection and usually yield unreliable results. To solve the problem, we propose a novel Polyphonic Evidential Neural Network (PENet) to model the evidential uncertainty of the class probability with Beta distribution. Specifically, we use a Beta distribution to model the distribution of class probabilities, and the evidential uncertainty enriches uncertainty representation with evidence information, which plays a central role in reliable prediction. To further improve the event detection performance, we design the backtrack inference method that utilizes both the forward and backward audio features of an ongoing event. Experiments on the DESED database show that the proposed method can simultaneously improve 13.0% and 3.8% in time delay and detection F1 score compared to the state-of-the-art methods.