A Dispersion Managed Phase Only Modulation 18 GHz Optoelectronic Oscillator

In this manuscript, we propose and experimentally demonstrate a dispersion-controlled optoelectronic oscillator with phase only modulator at 18 GHz. The generated microwave signal has a phase noise of −108 dBc/Hz at 10 kHz offset frequency and the integrated timing jitter is calculated to be 16.2 fs (1 kHz to 100 MHz) and 20 fs (1kHz to Nyquist).

Ordinal Quadruplet: Retrieval of Missing Labels in Ordinal Time Series

In this paper, we propose an ordered time series classification framework that is robust against missing classes in the training data, i.e., during testing we can prescribe classes that are missing during training. This framework relies on two main components: (1) our newly proposed ordinal quadruplet loss, which forces the model to learn latent representation while preserving the ordinal relation among labels, (2) testing procedure, which utilizes the property of latent representation (order preservation). We conduct experiments based on real world multivariate time series data and show the significant improvement in the prediction of missing labels even with 40% of the classes are missing from training. Compared with the well known triplet loss optimization augmented with interpolation for missing information, in some cases, we nearly double the accuracy.

Codebook Design for Composite Beamforming in Next generation mmWave Systems

In pursuance of the unused spectrum in higher frequencies, millimeter wave (mmWave) bands have a pivotal role. However, the high path loss and poor scattering associated with mmWave communications highlight the necessity of employing effective beamforming techniques. In order to efficiently search for the beam to serve a user and to jointly serve multiple users it is often required to use a composite beam which consists of multiple disjoint lobes. A composite beam covers multiple desired angular coverage intervals (ACIs) and ideally has maximum and uniform gain (smoothness) within each desired ACI, negligible gain (leakage) outside the desired ACIs, and sharp edges. We propose an algorithm for designing such ideal composite codebook by providing an analytical closed form solution with low computational complexity. There is a fundamental trade off between the gain, leakage and smoothness of the beams. Our design allows to achieve different values in such trade off based on changing the design parameters. We highlight the shortcomings of the uniform linear arrays (ULAs) in building arbitrary composite beams. Consequently, we use a recently introduced twin ULA (TULA) antenna structure to effectively resolve these inefficiencies. Numerical results are used to validate the theoretical findings.

Multi user Beam Alignment in Presence of Multi path

To overcome the high path loss and the intense shadowing in millimeter wave (mmWave) communications, effective beamforming schemes are required which incorporate narrow beams with high beamforming gains. The mmWave channel consists of a few spatial clusters each associated with an angle of departure (AoD). The narrow beams must be aligned with the channel AoDs to increase the beamforming gain. This is achieved through a procedure called beam alignment (BA). Most of the BA schemes in the literature consider channels with a single dominant path while in practice the channel has a few resolvable paths with different AoDs, hence, such BA schemes may not work correctly in the presence of multi path or at the least do not exploit such multipath to achieve diversity or increase robustness. In this paper, we propose an efficient BA scheme in presence of multi path. The proposed BA scheme transmits probing packets using a set of scanning beams and receives feedback for all the scanning beams at the end of the probing phase from each user. We formulate the BA scheme as minimizing the expected value of the average transmission beamwidth under different policies. The policy is defined as a function from the set of received feedback to the set of transmission beams (TB). In order to maximize the number of possible feedback sequences, we prove that the set of scanning beams (SB) has a special form, namely, Tulip Design. Consequently, we rewrite the minimization problem with a set of linear constraints and a reduced number of variables which is solved by using an efficient greedy algorithm.

AE-StyleGAN: Improved Training of Style-Based Auto-Encoders

StyleGANs have shown impressive results on data generation and manipulation in recent years, thanks to its disentangled style latent space. A lot of efforts have been made in inverting a pretrained generator, where an encoder is trained ad hoc after the generator is trained in a two-stage fashion. In this paper, we focus on style-based generators asking a scientific question: Does forcing such a generator to reconstruct real data lead to more disentangled latent space and make the inversion process from image to latent space easy? We describe a new methodology to train a style-based autoencoder where the encoder and generator are optimized end-to-end. We show that our proposed model consistently outperforms baselines in terms of image inversion and generation quality. Supplementary, code, and pretrained models are available on the project website.

SplitBrain: Hybrid Data and Model Parallel Deep Learning

The recent success of deep learning applications has coincided with those widely available powerful computational resources for training sophisticated machine learning models with huge datasets. Nonetheless, training large models such as convolutional neural networks using model parallelism (as opposed to data parallelism) is challenging because the complex nature of communication between model shards makes it difficult to partition the computation efficiently across multiple machines with an acceptable trade off. This paper presents SplitBrain, a high performance distributed deep learning framework supporting hybrid data and model parallelism. Specifically, SplitBrain provides layer specific partitioning that co locates compute intensive convolutional layers while sharding memory demanding layers. A novel scalable group communication is proposed to further improve the training throughput with reduced communication overhead. The results show that SplitBrain can achieve nearly linear speedup while saving up to 67% of memory consumption for data and model parallel VGG over CIFAR 10.

A Deep Generative Model for Molecule Optimization via One Fragment Modification

Molecule optimization is a critical step in drug development to improve the desired properties of drug candidates through chemical modification. We have developed a novel deep generative model, Modof, over molecular graphs for molecule optimization. Modof modifies a given molecule through the prediction of a single site of disconnection at the molecule and the removal and/or addition of fragments at that site. A pipeline of multiple, identical Modof models is implemented into Modof-pipe to modify an input molecule at multiple disconnection sites. Here we show that Modof-pipe is able to retain major molecular scaffolds, allow controls over intermediate optimization steps and better constrain molecule similarities. Modof-pipe outperforms the state-of-the-art methods on benchmark datasets. Without molecular similarity constraints, Modof-pipe achieves 81.2% improvement in the octanol–water partition coefficient, penalized by synthetic accessibility and ring size, and 51.2%, 25.6% and 9.2% improvement if the optimized molecules are at least 0.2, 0.4 and 0.6 similar to those before optimization, respectively. Modof-pipe is further enhanced into Modof-pipem to allow modification of one molecule to multiple optimized ones. Modof-pipem achieves additional performance improvement, at least 17.8% better than Modof-pipe.

Distributed Fiber Sensor Network Using Telecom Cables as Sensing Media: Technology Advancements and Applications

Distributed fiber optic sensing (DFOS) is a rapidly evolving field that allows the existing optical fiber infrastructure for telecommunications to be reused for wide-area sensing. Using the backscattering mechanisms of glass—which includes Rayleigh, Brillouin, and Raman backscatter—it is possible to realize distributed vibration and temperature sensors with good sensitivity at every fiber position, and spatial resolution is determined by the bandwidth of the interrogation signal. In this paper, we will review the main technologies in currently deployed DFOS. We review the digital signal processing operations that are performed to extract the sensing parameters of interest. We report recent distributed vibration sensing, distributed acoustic sensing, and distributed temperature sensing field trial results over an existing network with reconfigurable add/drop multiplexers carrying live telecom traffic, showing that the network is capable of simultaneous traffic and temperature monitoring. We report Brillouin optical time-domain reflectometry experimental results for monitoring static strain on aerial fiber cables suspended on utility poles. Finally, we demonstrate an example of network modification to make passive optical networks compatible with DFOS by adding reflective semiconductor optical amplifiers at optical network units.

Detection and Localization of Stationary Weights Hanging on Aerial Telecommunication Fibers using Distributed Acoustic Sensing

For the first time to our knowledge, a stationary weight hanging on an operational aerial telecommunication field fiber was detected and localized using only ambient data collected by a φ-DAS system. Although stationary weights do not create temporally varying signals, and hence cannot be observed directly from the DAS traces, the existence and the location of the additional weights were revealed by the operational modal analysis of the aerial fiber structure.

AQuA: Analytical Quality Assessment for Optimizing Video Analytics Systems

Millions of cameras at edge are being deployed to power a variety of different deep learning applications. However, the frames captured by these cameras are not always pristine – they can be distorted due to lighting issues, sensor noise, compression etc. Such distortions not only deteriorate visual quality, they impact the accuracy of deep learning applications that process such video streams. In this work, we introduce AQuA, to protect application accuracy against such distorted frames by scoring the level of distortion in the frames. It takes into account the analytical quality of frames, not the visual quality, by learning a novel metric, classifier opinion score, and uses a lightweight, CNN-based, object-independent feature extractor. AQuA accurately scores distortion levels of frames and generalizes to multiple different deep learning applications. When used for filtering poor quality frames at edge, it reduces high-confidence errors for analytics applications by 17%. Through filtering, and due to its low overhead (14ms), AQuA can also reduce computation time and average bandwidth usage by 25%.