Deep Multi-Instance Contrastive Learning with Dual Attention for Anomaly Precursor Detection

Prognostics or early detection of incipient faults by leveraging the monitoring time series data in complex systems is valuable to automatic system management and predictive maintenance. However, this task is challenging. First, learning the multi-dimensional heterogeneous time series data with various anomaly types is hard. Second, the precise annotation of anomaly incipient periods is lacking. Third, the interpretable tools to diagnose the precursor symptoms are lacking. Despite some recent progresses, few of the existing approaches can jointly resolve these challenges. In this paper, we propose MCDA, a deep multi-instance contrastive learning approach with dual attention, to detect anomaly precursor. MCDA utilizes multi-instance learning to model the uncertainty of precursor period and employs recurrent neural network with tensorized hidden states to extract precursor features encoded in temporal dynamics as well as the correlations between different pairs of time series. A dual attention mechanism on both temporal aspect and time series variables is developed to pinpoint the time period and the sensors the precursor symptoms are involved in. A contrastive loss is designed to address the issue that annotated anomalies are few. To the best of our knowledge, MCDA is the first method studying the problem of ‘when’ and ‘where’ for the anomaly precursor detection simultaneously. Extensive experiments on both synthetic and real datasets demonstrate the effectiveness of MCDA.

Ranking-based Convolutional Neural Network Models for Peptide-MHC Binding Prediction

T-cell receptors can recognize foreign peptides bound to major histocompatibility complex (MHC) class-I proteins, and thus trigger the adaptive immune response. Therefore, identifying peptides that can bind to MHC class-I molecules plays a vital role in the design of peptide vaccines. Many computational methods, for example, the state-of-the-art allele-specific method MHCflurry, have been developed to predict the binding affinities between peptides and MHC molecules. In this manuscript, we develop two allele-specific Convolutional Neural Network-based methods named ConvM and SpConvM to tackle the binding prediction problem. Specifically, we formulate the problem as to optimize the rankings of peptide-MHC bindings via ranking-based learning objectives. Such optimization is more robust and tolerant to the measurement inaccuracy of binding affinities, and therefore enables more accurate prioritization of binding peptides. In addition, we develop a new position encoding method in ConvM and SpConvM to better identify the most important amino acids for the binding events. We conduct a comprehensive set of experiments using the latest Immune Epitope Database (IEDB) datasets. Our experimental results demonstrate that our models significantly outperform the state-of-the-art methods including MHCflurry with an average percentage improvement of 6.70% on AUC and 17.10% on ROC5 across 128 alleles.

AutoOD: Neural Architecture Search for Outlier Detection

Outlier detection is an important data mining task with numerous applications such as intrusion detection, credit card fraud detection, and video surveillance. However, given a specific task with complex data, the process of building an effective deep learning based system for outlier detection still highly relies on human expertise and laboring trials. Moreover, while Neural Architecture Search (NAS) has shown its promise in discovering effective deep architectures in various domains, such as image classification, object detection and semantic segmentation, contemporary NAS methods are not suitable for outlier detection due to the lack of intrinsic search space and low sample efficiency. To bridge the gap, in this paper, we propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model within a predefined search space. Specifically, we introduce an experience replay mechanism based on self-imitation learning to improve the sample efficiency. Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance, comparing with existing handcrafted models and traditional search methods.

Learning to Drop: Robust Graph Neural Network via Topological Denoising

Graph Neural Networks (GNNs) have shown to be powerful tools for graph analytics. The key idea is to recursively propagate and aggregate information along the edges of the given graph. Despite their success, however, the existing GNNs are usually sensitive to the quality of the input graph. Real-world graphs are often noisy and contain task-irrelevant edges, which may lead to suboptimal generalization performance in the learned GNN models. In this paper, we propose PTDNet, a parameterized topological denoising network, to improve the robustness and generalization performance of GNNs by learning to drop task-irrelevant edges. PTDNet prunes task-irrelevant edges by penalizing the number of edges in the sparsified graph with parameterized networks. To take into consideration the topology of the entire graph, the nuclear norm regularization is applied to impose the low-rank constraint on the resulting sparsified graph for better generalization. PTDNet can be used as a key component in GNN models to improve their performances on various tasks, such as node classification and link prediction. Experimental studies on both synthetic and benchmark datasets show that PTDNet can improve the performance of GNNs significantly and the performance gain becomes larger for more noisy datasets.

Multi-Task Recurrent Modular Networks

We consider the models of deep multi-task learning with recurrent architectures that exploit regularities across tasks to improve the performance of multiple sequence processing tasks jointly. Most existing architectures are painstakingly customized to learn task relationships for different problems, which is not flexible enough to model the dynamic task relationships and lacks generalization abilities to novel test-time scenarios. We propose multi-task recurrent modular networks (MT-RMN) that can be incorporated in any multi-task recurrent models to address the above drawbacks. MT-RMN consists of a shared encoder and multiple task-specific decoders, and recurrently operates over time. For better flexibility, it modularizes the encoder into multiple layers of sub-networks and dynamically controls the connection between these sub-networks and the decoders at different time steps, which provides the recurrent networks with varying degrees of parameter sharing for tasks with dynamic relatedness. For the generalization ability, MT-RMN aims to discover a set of generalizable sub-networks in the encoder that are assembled in different ways for different tasks. The policy networks augmented with the differentiable routers are utilized to make the binary connection decisions between the sub-networks. The experimental results on three multi-task sequence processing datasets consistently demonstrate the effectiveness of MT-RMN.

Dynamic Gaussian Mixture based Deep Generative Model For Robust Forecasting on Sparse Multivariate Time Series

Forecasting on Sparse Multivariate Time Series Forecasting on sparse multivariate time series (MTS) aims to model the predictors of future values of time series given their incomplete past, which is important for many emerging applications. However, most existing methods process MTS’s individually, and do not leverage the dynamic distributions underlying the MTS’s, leading to sub-optimal results when the sparsity is high. To address this challenge, we propose a novel generative model, which tracks the transition of latent clusters, instead of isolated feature representations, to achieve robust modeling. It is characterized by a newly designed dynamic Gaussian mixture distribution, which captures the dynamics of clustering structures, and is used for emitting time series. The generative model is parameterized by neural networks. A structured inference network is also designed for enabling inductive analysis. A gating mechanism is further introduced to dynamically tune the Gaussian mixture distributions. Extensive experimental results on a variety of real-life datasets demonstrate the effectiveness of our method.

A Multi-Scale Conditional Deep Model for Tumor Cell Ratio Counting

We propose a method to accurately obtain the ratio of tumor cells over an entire histological slide. We use deep fully convolutional neural network models trained to detect and classify cells on images of H&E-stained tissue sections. Pathologists’ labels consisting of exhaustive nuclei locations and tumor regions were used to trained the model in a supervised fashion. We show that combining two models, each working at a different magnification allows the system to capture both cell-level details and surrounding context to enable successful detection and classification of cells as either tumor-cell or normal-cell. Indeed, by conditioning the classification of a single cell on a multi-scale context information, our models mimic the process used by pathologists who assess cell neoplasticity and tumor extent at different microscope magnifications. The ratio of tumor cells can then be readily obtained by counting the number of cells in each class. To analyze an entire slide, we split it into multiple tiles that can be processed in parallel. The overall tumor cell ratio can then be aggregated. We perform experiments on a dataset of 100 slides with lung tumor specimens from both resection and tissue micro-array (TMA). We train fully-convolutional models using heavy data augmentation and batch normalization. On an unseen test set, we obtain an average mean absolute error on predicting the tumor cell ratio of less than 6%, which is significantly better than the human average of 20% and is key in properly selecting tissue samples for recent genetic panel tests geared at prescribing targeted cancer drugs. We perform ablation studies to show the importance of training two models at different magnifications and to justify the choice of some parameters, such as the size of the receptive field.

Improving neural network robustness through neighborhood preserving layers

One major source of vulnerability of neural nets in classification tasks is from overparameterized fully connected layers near the end of the network. In this paper, we propose a new neighborhood preserving layer which can replace these fully connected layers to improve the network robustness. Networks including these neighborhood preserving layers can be trained efficiently. We theoretically prove that our proposed layers are more robust against distortion because they effectively control the magnitude of gradients. Finally, we empirically show that networks with our proposed layers are more robust against state-of-the-art gradient descent-based attacks, such as a PGD attack on the benchmark image classification datasets MNIST and CIFAR10.

Cross-Modality 3D Object Detection

In this paper, we focus on exploring the fusion of images and point clouds for 3D object detection in view of the complementary nature of the two modalities, i.e., images possess more semantic information while point clouds specialize in distance sensing. To this end, we present a novel two-stage multi-modal fusion network for 3D object detection, taking both binocular images and raw point clouds as input. The whole architecture facilitates two-stage fusion. The first stage aims at producing 3D proposals through sparse pointwise feature fusion. Within the first stage, we further exploit a joint anchor mechanism that enables the network to utilize 2D-3D classification and regression simultaneously for better proposal generation. The second stage works on the 2D and 3D proposal regions and fuses their dense features. In addition, we propose to use pseudo LiDAR points from stereo matching as a data augmentation method to densify the LiDAR points, as we observe that objects missed by the detection network mostly have too few points especially for far-away objects. Our experiments on the KITTI dataset show that the proposed multi-stage fusion helps the network to learn better representations.

Set Augmented Triplet Loss for Video Person Re-Identification

Modern video person re-identification (re-ID) machines are often trained using a metric learning approach, supervised by a triplet loss. The triplet loss used in video re-ID is usually based on so-called clip features, each aggregated from a few frame features. In this paper, we propose to model the video clip as a set and instead study the distance between sets in the corresponding triplet loss. In contrast to the distance between clip representations, the distance between clip sets considers the pair-wise similarity of each element (i.e., frame representation) between two sets. This allows the network to directly optimize the feature representation at a frame level. Apart from the commonly-used set distance metrics (e.g., ordinary distance and Hausdorff distance), we further propose a hybrid distance metric, tailored for the set-aware triplet loss. Also, we propose a hard positive set construction strategy using the learned class prototypes in a batch. Our proposed method achieves state-of-the-art results across several standard benchmarks, demonstrating the advantages of the proposed method.