3D Scene Understanding is a field in computer vision and artificial intelligence that focuses on interpreting and understanding complex environments from three-dimensional data. Unlike traditional 2D image understanding, which deals with flat images, 3D scene understanding involves analyzing spatial data that captures the depth and volume of the environment. This field is significant for numerous applications, from autonomous vehicles to augmented reality.


A Dataset for High-Level 3D Scene Understanding of Complex Road Scenes in the Top-View

We introduce a novel dataset for high-level 3D scene understanding of complex road scenes. Our annotations extend the existing datasets KITTI [5] and nuScenes [1] with semantically and geometrically meaningful attributes like the number of lanes or the existence of, and distance to, intersections, sidewalks and crosswalks. Our attributes are rich enough to build a meaningful representation of the scene in the top-view and provide a tangible interface to the real world for several practical applications.

A Parametric Top-View Representation of Complex Road Scenes

In this paper, we address the problem of inferring the layout of complex road scenes given a single camera as input. To achieve that, we first propose a novel parameterized model of road layouts in a top-view representation, which is not only intuitive for human visualization but also provides an interpretable interface for higher-level decision making. Moreover, the design of our top-view scene model allows for efficient sampling and thus generation of large-scale simulated data, which we leverage to train a deep neural network to infer our scene model’s parameters. Specifically, our proposed training procedure uses supervised domain-adaptation techniques to incorporate both simulated as well as manually annotated data. Finally, we design a Conditional Random Field (CRF) that enforces coherent predictions for a single frame and encourages temporal smoothness among video frames. Experiments on two public data sets show that: (1) Our parametric top-view model is representative enough to describe complex road scenes; (2) The proposed method outperforms baselines trained on manually-annotated or simulated data only, thus getting the best of both; (3) Our CRF is able to generate temporally smoothed while semantically meaningful results.

Learning to Look around Objects for Top-View Representations of Outdoor Scenes

Given a single RGB image of a complex outdoor road scene in the perspective view, we address the novel problem of estimating an occlusion-reasoned semantic scene layout in the top-view. This challenging problem not only requires an accurate understanding of both the 3D geometry and the semantics of the visible scene, but also of occluded areas. We propose a convolutional neural network that learns to predict occluded portions of the scene layout by looking around foreground objects like cars or pedestrians. But instead of hallucinating RGB values, we show that directly predicting the semantics and depths in the occluded areas enables a better transformation into the top-view. We further show that this initial top-view representation can be significantly enhanced by learning priors and rules about typical road layouts from simulated or, if available, map data. Crucially, training our model does not require costly or subjective human annotations for occluded areas or the top-view, but rather uses readily available annotations for standard semantic segmentation in the perspective view. We extensively evaluate and analyze our approach on the KITTI and Cityscapes data sets.