5G Mobile Front Haul refers to a critical component of the 5G network architecture that handles the transmission of data and signals between the radio units (RUs) and the central unit (CU) or distributed unit (DU) in a 5G base station. The front haul network plays a crucial role in ensuring the high-speed, low-latency communication required by 5G technology.

Posts

Distributed Fiber Sensor Network Using Telecom Cables as Sensing Media: Technology Advancements and Applications

Distributed Fiber Sensor Network Using Telecom Cables as Sensing Media: Technology Advancements and Applications Distributed fiber optic sensing (DFOS) is a rapidly evolving field that allows the existing optical fiber infrastructure for telecommunications to be reused for wide-area sensing. Using the backscattering mechanisms of glass—which includes Rayleigh, Brillouin, and Raman backscatter—it is possible to realize distributed vibration and temperature sensors with good sensitivity at every fiber position, and spatial resolution is determined by the bandwidth of the interrogation signal. In this paper, we will review the main technologies in currently deployed DFOS. We review the digital signal processing operations that are performed to extract the sensing parameters of interest. We report recent distributed vibration sensing, distributed acoustic sensing, and distributed temperature sensing field trial results over an existing network with reconfigurable add/drop multiplexers carrying live telecom traffic, showing that the network is capable of simultaneous traffic and temperature monitoring. We report Brillouin optical time-domain reflectometry experimental results for monitoring static strain on aerial fiber cables suspended on utility poles. Finally, we demonstrate an example of network modification to make passive optical networks compatible with DFOS by adding reflective semiconductor optical amplifiers at optical network units.

Distributed Fiber Sensor Network using Telecom Cables as Sensing Media: Applications

Distributed Fiber Sensor Network using Telecom Cables as Sensing Media: Applications Distributed fiber optical systems (DFOS) allow deployed optical cables to monitor the ambient environment over wide geographic area. We review recent field trial results, and show how DFOS can be made compatible with passive optical networks (PONs).

Simultaneous Optical Fiber Sensing and Mobile Front-Haul Access over a Passive Optical Network

Simultaneous Optical Fiber Sensing and Mobile Front-Haul Access over a Passive Optical Network We demonstrate a passive optical network (PON) that employs reflective semiconductor optical amplifiers (RSOAs) at optical network units (ONUs) to allow simultaneous data transmission with distributed fiber-optic sensing (DFOS) on individual distribution fibers.