An Advanced Persistent Threat (APT) is a sophisticated and targeted cyberattack in which an unauthorized user gains access to a network and remains undetected for an extended period. APTs are characterized by their advanced and persistent nature, as they are often orchestrated by well-funded and highly skilled threat actors, such as nation-states, organized crime groups, or other advanced cybercriminal entities.

Posts

A Query System for Efficiently Investigating Complex Attack Behaviors for Enterprise Security

The need for countering Advanced Persistent Threat (APT) attacks has led to the solutions that ubiquitously monitor system activities in each enterprise host, and perform timely attack investigation over the monitoring data for uncovering the attack sequence. However, existing general-purpose query systems lack explicit language constructs for expressing key properties of major attack behaviors, and their semantics-agnostic design often produces inefficient execution plans for queries. To address these limitations, we build Aiql, a novel query system that is designed with novel types of domain-specific optimizations to enable efficient attack investigation. Aiql provides (1) a domain-specific data model and storage for storing the massive system monitoring data, (2) a domain-specific query language, Attack Investigation Query Language (Aiql) that integrates critical primitives for expressing major attack behaviors, and (3) an optimized query engine based on the characteristics of the data and the semantics of the query to efficiently schedule the execution. We have deployed Aiql in NEC Labs America comprising 150 hosts. In our demo, we aim to show the complete usage scenario of Aiql by (1) performing an APT attack in a controlled environment, and (2) using Aiql to investigate such attack by querying the collected system monitoring data that contains the attack traces. The audience will have the option to perform the APT attack themselves under our guidance, and interact with the system and investigate the attack via issuing queries and checking the query results through our web UI.

AIQL: Enabling Efficient Attack Investigation from System Monitoring Data

The need for countering Advanced Persistent Threat (APT) attacks has led to solutions that ubiquitously monitor system activities in each host and perform timely attack investigation over the monitoring data for analyzing attack provenance. However, existing query systems based on relational databases and graph databases lack language constructs to express key properties of major attack behaviors, and often execute queries inefficiently since their semantics-agnostic design cannot exploit the properties of system monitoring data to speed up query execution.To address this problem, we propose a novel query system built on top of existing monitoring tools and databases, which is designed with novel types of optimizations to support timely attack investigation. Our system provides (1) domain-specific data model and storage for scaling the storage, (2) a domain-specific query language, Attack Investigation Query Language (AIQL) that integrates critical primitives for attack investigation, and (3) an optimized query engine based on the characteristics of the data and the semantics of the queries to efficiently schedule the query execution. We deployed our system in NEC Labs America comprising 150 hosts and evaluated it using 857 GB of real system monitoring data (containing 2.5 billion events). Our evaluations on a real-world APT attack and a broad set of attack behaviors show that our system surpasses existing systems in both efficiency (124x over PostgreSQL, 157x over Neo4j, and 16x over Greenplum) and conciseness (SQL, Neo4j Cypher, and Splunk SPL contain at least 2.4x more constraints than AIQL).

Towards a Timely Causality Analysis for Enterprise Security

The increasingly sophisticated Advanced Persistent Threat (APT) attacks have become a serious challenge for enterprise IT security. Attack causality analysis, which tracks multi-hop causal relationships between files and processes to diagnose attack provenances and consequences, is the first step towards understanding APT attacks and taking appropriate responses. Since attack causality analysis is a time-critical mission, it is essential to design causality tracking systems that extract useful attack information in a timely manner. However, prior work is limited in serving this need. Existing approaches have largely focused on pruning causal dependencies totally irrelevant to the attack, but fail to differentiate and prioritize abnormal events from numerous relevant, yet benign and complicated system operations, resulting in long investigation time and slow responses.