Array Antennas ULA refers to the use of a specific type of antenna array known as a Uniform Linear Array (ULA) for beamforming in millimeter-wave (mmWave) communications. There are challenges associated with high pathloss and intense shadowing in mmWave channels and there is a need for effective beamforming schemes to address these issues. A Uniform Linear Array is a configuration of antennas arranged in a straight line with uniform spacing between adjacent antennas. This array design is a common and straightforward structure used in various communication systems, radar systems, and signal processing applications.

Posts

Multi-user Beam Alignment in Presence of Multi-path

To overcome the high pathloss and the intense shadowing in millimeterwave (mmWave) communications, effective beamforming schemes are required which incorporate narrow beams with high beamforming gains. The mm Wave channel consists of a few spatial clusters each associated with an angle of departure (AoD). The narrow beams must be aligned with the channel AoDs to increase the beamforming gain. This is achieved through a procedure called beam alignment (BA). Most of the BA schemes in the literature consider channels with a single dominant path while in practice the channel has a few resolvable paths with different AoDs, hence, such BA schemes may not work correctly in the presence of multi-path or at the least do not exploit such multi path to achieve diversity or increase robustness. In this paper, we propose an efficient BA schemes in presence of multi-path. The proposed BA scheme transmits probing packets using a set of scanning beams and receives the feedback for all the scanning beams at the end of probing phase from each user. We formulate the BA scheme as minimizing the expected value of the average transmission beamwidth under different policies. The policy is defined as a function from the set of received feedback to the set of transmission beams (TB). In order to maximize the number of possible feedback sequences, we prove that the set of scanning beams (SB) has an special form, namely, Tulip Design. Consequently, we rewrite the minimization problem with a set of linear constraints and reduced number of variables which is solved by using an efficient greedy algorithm.

Multi user Beam Alignment in Presence of Multi path

To overcome the high path loss and the intense shadowing in millimeter wave (mmWave) communications, effective beamforming schemes are required which incorporate narrow beams with high beamforming gains. The mmWave channel consists of a few spatial clusters each associated with an angle of departure (AoD). The narrow beams must be aligned with the channel AoDs to increase the beamforming gain. This is achieved through a procedure called beam alignment (BA). Most of the BA schemes in the literature consider channels with a single dominant path while in practice the channel has a few resolvable paths with different AoDs, hence, such BA schemes may not work correctly in the presence of multi path or at the least do not exploit such multipath to achieve diversity or increase robustness. In this paper, we propose an efficient BA scheme in presence of multi path. The proposed BA scheme transmits probing packets using a set of scanning beams and receives feedback for all the scanning beams at the end of the probing phase from each user. We formulate the BA scheme as minimizing the expected value of the average transmission beamwidth under different policies. The policy is defined as a function from the set of received feedback to the set of transmission beams (TB). In order to maximize the number of possible feedback sequences, we prove that the set of scanning beams (SB) has a special form, namely, Tulip Design. Consequently, we rewrite the minimization problem with a set of linear constraints and a reduced number of variables which is solved by using an efficient greedy algorithm.