In the context of machine learning and natural language processing (NLP), “Attention” refers to a mechanism that allows a model to focus on specific parts of the input sequence when making predictions or generating output. Attention mechanisms have been particularly influential in the development of neural network architectures, improving their ability to handle sequences of varying lengths and capture long-range dependencies.

Posts

Ranking-based Convolutional Neural Network Models for Peptide-MHC Binding Prediction

T-cell receptors can recognize foreign peptides bound to major histocompatibility complex (MHC) class-I proteins, and thus trigger the adaptive immune response. Therefore, identifying peptides that can bind to MHC class-I molecules plays a vital role in the design of peptide vaccines. Many computational methods, for example, the state-of-the-art allele-specific method MHCflurry, have been developed to predict the binding affinities between peptides and MHC molecules. In this manuscript, we develop two allele-specific Convolutional Neural Network-based methods named ConvM and SpConvM to tackle the binding prediction problem. Specifically, we formulate the problem as to optimize the rankings of peptide-MHC bindings via ranking-based learning objectives. Such optimization is more robust and tolerant to the measurement inaccuracy of binding affinities, and therefore enables more accurate prioritization of binding peptides. In addition, we develop a new position encoding method in ConvM and SpConvM to better identify the most important amino acids for the binding events. We conduct a comprehensive set of experiments using the latest Immune Epitope Database (IEDB) datasets. Our experimental results demonstrate that our models significantly outperform the state-of-the-art methods including MHCflurry with an average percentage improvement of 6.70% on AUC and 17.10% on ROC5 across 128 alleles.

At the Speed of Sound: Efficient Audio Scene Classification

Efficient audio scene classification is essential for smart sensing platforms such as robots, medical monitoring, surveillance, or autonomous vehicles. We propose a retrieval-based scene classification architecture that combines recurrent neural networks and attention to compute embeddings for short audio segments. We train our framework using a custom audio loss function that captures both the relevance of audio segments within a scene and that of sound events within a segment. Using experiments on real audio scenes, we show that we can discriminate audio scenes with high accuracy after listening in for less than a second. This preserves 93% of the detection accuracy obtained after hearing the entire scene.

Contextual Grounding of Natural Language Entities in Images

In this paper, we introduce a contextual grounding approach that captures the context in corresponding text entities and image regions to improve the grounding accuracy. Specifically, the proposed architecture accepts pre-trained text token embeddings and image object features from an off-the-shelf object detector as input. Additional encoding to capture the positional and spatial information can be added to enhance the feature quality. There are separate text and image branches facilitating respective architectural refinements for different modalities. The text branch is pre-trained on a large-scale masked language modeling task while the image branch is trained from scratch. Next, the model learns the contextual representations of the text tokens and image objects through layers of high-order interaction respectively. The final grounding head ranks the correspondence between the textual and visual representations through cross-modal interaction. In the evaluation, we show that our model achieves the state-of-the-art grounding accuracy of 71.36% over the Flickr30K Entities dataset. No additional pre-training is necessary to deliver competitive results compared with related work that often requires task-agnostic and task-specific pre-training on cross-modal datasets. The implementation is publicly available at https://gitlab.com/necla-ml/grounding.

Contextual Grounding of Natural Language Phrases in Images

In this paper, we introduce a contextual grounding approach that captures the context in corresponding text entities and image regions to improve the grounding accuracy. Specifically, the proposed architecture accepts pre-trained text token embeddings and image object features from an off-the-shelf object detector as input. Additional encoding to capture the positional and spatial information can be added to enhance the feature quality. There are separate text and image branches facilitating respective architectural refinements for different modalities. The text branch is pre-trained on a large-scale masked language modeling task while the image branch is trained from scratch. Next, the model learns the contextual representations of the text tokens and image objects through layers of high-order interaction respectively. The final grounding head ranks the correspondence between the textual and visual representations through cross-modal interaction. In the evaluation, we show that our model achieves the state-of-the-art grounding accuracy of 71.36% over the Flickr30K Entities dataset. No additional pre-training is necessary to deliver competitive results compared with related work that often requires task-agnostic and task-specific pre-training on cross-modal datasets. The implementation is publicly available at https://gitlab.com/necla-ml/Grounding

Visual Entailment: A Novel Task for Fine-Grained Image Understanding

Existing visual reasoning datasets, such as Visual Question Answering (VQA), often suffer from biases conditioned on the question, image or answer distributions. The recently proposed CLEVR dataset addresses these limitations and requires fine-grained reasoning, but the dataset is synthetic and consists of similar objects and sentence structures across the dataset. In this paper, we introduce a new inference task, Visual Entailment (VE) – consisting of image-sentence pairs whereby a premise is defined by an image, rather than a natural language sentence as in traditional Textual Entailment tasks. The goal of a trained VE model is to predict whether the image semantically entails the text. To realize this task, we build a dataset SNLI-VE based on the Stanford Natural Language Inference corpus and Flickr30k dataset. We evaluate various existing VQA baselines and build a model called Explainable Visual Entailment (EVE) system to address the VE task. EVE achieves up to 71% accuracy and outperforms several other state-of-the-art VQA based models. Finally, we demonstrate the explainability of EVE through cross-modal attention visualizations.

Visual Entailment Task for Visually-Grounded Language Learning

We introduce a new inference task – Visual Entailment (VE) – which differs from traditional Textual Entailment (TE) tasks whereby a premise is defined by an image, rather than a natural language sentence as in TE tasks. A novel dataset SNLI-VE is proposed for VE tasks based on the Stanford Natural Language Inference corpus and Flickr30K. We introduce a differentiable architecture called the Explainable Visual Entailment model (EVE) to tackle the VE problem. EVE and several other state-of-the-art visual question answering (VQA) based models are evaluated on the SNLI-VE dataset, facilitating grounded language understanding and providing insights on how modern VQA based models perform.

Adaptive Feature Abstraction for Translating Video to Text

Previous models for video captioning often use the output from a specific layer of a Convolutional Neural Network (CNN) as video features. However, the variable context-dependent semantics in the video may make it more appropriate to adaptively select features from the multiple CNN layers. We propose a new approach to generating adaptive spatiotemporal representations of videos for the captioning task. A novel attention mechanism is developed, which adaptively and sequentially focuses on different layers of CNN features (levels of feature “abstraction”), as well as local spatiotemporal regions of the feature maps at each layer. The proposed approach is evaluated on three benchmark datasets: YouTube2Text, M-VAD and MSR-VTT. Along with visualizing the results and how the model works, these experiments quantitatively demonstrate the effectiveness of the proposed adaptive spatiotemporal feature abstraction for translating videos to sentences with rich semantics.