Causal Graph refers to a graphical representation that depicts the causal relationships between variables in a system. Nodes in the graph represent variables, and directed edges between nodes indicate the causal influence of one variable on another. Causal graphs are useful for visualizing and analyzing complex causal structures.

Posts

Dynamic Causal Discovery in Imitation Learning

Imitation learning, which learns agent policy by mimicking expert demonstration, has shown promising results in many applications such as medical treatment regimes and self-driving vehicles. However, it remains a difficult task to interpret control policies learned by the agent. Difficulties mainly come from two aspects: 1) agents in imitation learning are usually implemented as deep neural networks, which are black-box models and lack interpretability; 2) the latent causal mechanism behind agents’ decisions may vary along the trajectory, rather than staying static throughout time steps. To increase transparency and offer better interpretability of the neural agent, we propose to expose its captured knowledge in the form of a directed acyclic causal graph, with nodes being action and state variables and edges denoting the causal relations behind predictions. Furthermore, we design this causal discovery process to be state-dependent, enabling it to model the dynamics in latent causal graphs. Concretely, we conduct causal discovery from the perspective of Granger causality and propose a self-explainable imitation learning framework, CAIL. The proposed framework is composed of three parts: a dynamic causal discovery module, a causality encoding module, and a prediction module, and is trained in an end-to-end manner. After the model is learned, we can obtain causal relations among states and action variables behind its decisions, exposing policies learned by it. Experimental results on both synthetic and real-world datasets demonstrate the effectiveness of the proposed CAIL in learning the dynamic causal graphs for understanding the decision-making of imitation learning meanwhilemaintaining high prediction accuracy.

Adaptation Speed Analysis for Fairness-Aware Causal Models

For example, in machine translation tasks, to achieve bidirectional translation between two languages, the source corpus is often used as the target corpus, which involves the training of two models with opposite directions. The question of which one can adapt most quickly to a domain shift is of significant importance in many fields. Specifically, consider an original distribution p that changes due to an unknown intervention, resulting in a modified distribution p*. In aligning p with p*, several factors can affect the adaptation rate, including the causal dependencies between variables in p. In real-life scenarios, however, we have to consider the fairness of the training process, and it is particularly crucial to involve a sensitive variable (bias) present between a cause and an effect variable. To explore this scenario, we examine a simple structural causal model (SCM) with a cause-bias-effect structure, where variable A acts as a sensitive variable between cause (X) and effect (Y). The two models respectively exhibit consistent and contrary cause-effect directions in the cause-bias-effect SCM. After conducting unknown interventions on variables within the SCM, we can simulate some kinds of domain shifts for analysis. We then compare the adaptation speeds of two models across four shift scenarios. Additionally, we prove the connection between the adaptation speeds of the two models across all interventions.