Chaoran Huang works at Princeton University.

Posts

Time Series Prediction and Classification using Silicon Photonic Neuron with Self-Connection

Time Series Prediction and Classification using Silicon Photonic Neuron with Self-Connection We experimentally demonstrated real-time operation of a photonic neuron with a self-connection, a pre-requisite for integrated recurrent neural networks (RNNs). After studying two applications we propose a photonics-assisted platform for time series prediction and classification.

Weight Pruning Techniques for Nonlinear Impairment Compensation using Neural Networks

Weight Pruning Techniques for Nonlinear Impairment Compensation using Neural Networks Neural networks (NNs) are attractive for nonlinear impairment compensation applications in communication systems, such as optical fiber nonlinearity, nonlinearity of driving amplifiers, and nonlinearity of semiconductor optical amplifiers. Without prior knowledge of the transmission link or the hardware characteristics, optimal parameters are completely constructed from a data-driven approach by exploring training datasets, once the NN structure is given. On the other hand, due to computational power and energy consumption, especially in high-speed communication systems, the computational complexity of the optimized NN needs to be confined to the hardware, such as FPGA or ASIC without sacrificing its performance improvement. In this paper, two approaches are presented to accommodate the NN-based algorithms for high-speed communication systems. The first approach is to reduce computational complexity of the NN-based nonlinearity compensation algorithms on the basis of weight pruning (WP). WP can significantly reduce the computational complexity, especially because the nonlinear compensation task studied here results in a sparse NN. The authors have studied an enhanced approach of WP by imposing an additional restriction on the selection of non-zero weights on each hidden layer. The second approach is to implement NNs onto a silicon-photonic integrated platform, enabling power efficiency to be further improved without sacrificing the high-speed operation.

A Silicon Photonic-Electronic Neural Network for Fiber Nonlinearity Compensation

A Silicon Photonic-Electronic Neural Network for Fiber Nonlinearity Compensation In optical communication systems, fibre nonlinearity is the major obstacle in increasing the transmission capacity. Typically, digital signal processing techniques and hardware are used to deal with optical communication signals, but increasing speed and computational complexity create challenges for such approaches. Highly parallel, ultrafast neural networks using photonic devices have the potential to ease the requirements placed on digital signal processing circuits by processing the optical signals in the analogue domain. Here we report a silicon photonic–electronic neural network for solving fibre nonlinearity compensation in submarine optical-fibre transmission systems. Our approach uses a photonic neural network based on wavelength-division multiplexing built on a silicon photonic platform compatible with complementary metal–oxide–semiconductor technology. We show that the platform can be used to compensate for optical fibre nonlinearities and improve the quality factor of the signal in a 10,080 km submarine fibre communication system. The Q-factor improvement is comparable to that of a software-based neural network implemented on a workstation assisted with a 32-bit graphic processing unit.

Nonlinear Impairment Compensation using Neural Networks

Nonlinear Impairment Compensation using Neural Networks Neural networks are attractive for nonlinear impairment compensation applications in communication systems. In this paper, several approaches to reduce computational complexity of the neural network-based algorithms are presented.

Demonstration of photonic neural network for fiber nonlinearity compensation in long-haul transmission systems

Demonstration of photonic neural network for fiber nonlinearity compensation in long-haul transmission systems We demonstrate the experimental implementation of photonic neural network for fiber nonlinearity compensation over a 10,080 km trans-pacific transmission link. Q-factor improvement of 0.51 dB is achieved with only 0.06 dB lower than numerical simulations.