Chenrui Jin was a research intern at NEC Laboratories America, Inc.

Posts

Coordination of PV Smart Inverters Using Deep Reinforcement Learning for Grid Voltage Regulation

Increasing adoption of solar photovoltaic (PV) presents new challenges to modern power grid due to its variable and intermittent nature. Fluctuating outputs from PV generation can cause the grid violating voltage operation limits. PV smart inverters (SIs) provide a fast-response method to regulate voltage by modulating real and/or reactive power at the connection point. Yet existing local autonomous control scheme of SIs is based on local information without coordination, which can lead to suboptimal performance. In this paper, a deep reinforcement learning (DRL) based algorithm is developed and implemented for coordinating multiple SIs. The reward scheme of the DRL is carefully designed to ensure voltage operation limits of the grid are met with more effective utilization of SI reactive power. The proposed DRL agent for voltage control can learn its policy through interaction with massive offline simulations, and adapts to load and solar variations. The performance of the DRL agent is compared against the local autonomous control on the IEEE 37 node system with thousands of scenarios. The results show a properly trained DRL agent can intelligently coordinate different SIs for maintaining grid voltage within allowable ranges, achieving reduction of PV production curtailment, and decreasing system losses.

Detection of False Data Injection Attacks in Cyber-Physical Systems using Dynamic Invariants

Modern cyber-physical systems are increasingly complex and vulnerable to attacks like false data injection aimed at destabilizing and confusing the systems. We develop and evaluate an attack-detection framework aimed at learning a dynamic invariant network, data-driven temporal causal relationships between components of cyber-physical systems. We evaluate the relative performance in attack detection of the proposed model relative to traditional anomaly detection approaches. In this paper, we introduce Granger Causality based Kalman Filter with Adaptive Robust Thresholding (G-KART) as a framework for anomaly detection based on data-driven functional relationships between components in cyber-physical systems. In particular, we select power systems as a critical infrastructure with complex cyber-physical systems whose protection is an essential facet of national security. The system presented is capable of learning with or without network topology the task of detection of false data injection attacks in power systems. Kalman filters are used to learn and update the dynamic state of each component in the power system and in-turn monitor the component for malicious activity. The ego network for each node in the invariant graph is treated as an ensemble model of Kalman filters, each of which captures a subset of the node’s interactions with other parts of the network. We finally also introduce an alerting mechanism to surface alerts about compromised nodes.

VeCharge: Intelligent Energy Management for Electric Vehicle charging

2018’s 1.2 million North American charging ports will grow ten times to over 12.6 million by 2027, according to Navigant, which could overwhelm the nation’s grids. DC Fast charging requires grid upgrade to supply the new charging demand. However, since the utilization ratio of those charging station is currently low. Demand charge cost can reach up to 90% of the total bill. Combining fast charging with energy storage can mitigate grid impacts and reduce demand charges. EV specific pricing is proposed for EV charging by many energy suppliers. Without managed charging, EV owner will lose the benefit of lowering charging cost by avoiding peak hour charging or missing the period when renewable energy generation is abundant.

Data-Driven Day-Ahead PV Estimation Using Hybrid Deep Learning

Ongoing smart grid activities and associated automation resulted in rich set of data. These data can be utilized for monitoring and estimation of real time photovoltaic (PV) generation. Inherent variability in PV and related impact on power systems is a challenging problem. Improving the accuracy of PV generation estimation is beneficial for both the PV owners and the grid operators. Recently, deep learning algorithms possible by the availability of data have shown its advantages for time series estimation; however, its application on PV generation estimation is still in the early stage. In this paper, a hybrid estimation model with a combination of long-short-term-memory network (LSTM) and persistence model (PM) is developed to provide day-ahead PV estimation at 15-minute time interval with high accuracy and robustness. Simulation results show the superior performance of the proposed method over existing methods for most of the test c

Adaptive and Integared PV Output control with Battery Energy Storage

An adaptive control system for battery integrated PV generation is designed to reduce the fluctuating in PV power production. The core component of the system is a four-layer power control system (PCS) for Battery Energy Storage (BES). BES responds to the power dispatch commands from PCS and charges/discharges to mitigate variations in PV power output. As a core part of the system, a novel PV power smoothing algorithm is proposed to reduce battery capacity requirements and reduce battery life losses by adaptively adjusting control parameter settings based on real-time system characteristics. Extensive simulation results based on real PV generation data have been presented to justify the effectiveness of the proposed approach and to show how several key parameters affect its performance.