Composite Beamforming refers to a sophisticated technique that combines elements of both analog and digital beamforming to optimize the directional transmission or reception of signals. Composite beamforming leverages the advantages of both analog and digital approaches to achieve enhanced performance in terms of coverage, interference mitigation, and overall system efficiency. This technology contributes to improved coverage, interference management, and overall network performance.

Posts

The Trade-off between Scanning Beam Penetration and Transmission Beam Gain in mmWave Beam Alignment

Beam search algorithms have been proposed to align the beams from an access point to a user equipment. The process relies on sending beams from a set of scanning beams (SB) and tailoring a transmission beam (TB) using the received feedback. In this paper, we discuss a fundamental trade-off between the gain of SBs and TBs. The higher the gain of an SB, the better the penetration of the SB and the higher the gain of the TB the better the communication link performance. However, TB depends on the set of SBs and by increasing the coverage of each SB and in turn reducing its penetration, there is more opportunity to find a sharper TB to increase its beamforming gain. We define a quantitative measure for such trade-off in terms of a trade-off curve. We introduce SB set design namely Tulip design and formally prove it achieves this fundamental trade-off curve for channels with a single dominant path. We also find closed-form solutions for the trade-off curve for special cases and provide an algorithm with its performance evaluation results to find the trade-off curve revealing the need for further optimization on the SB sets in the state-of-the-art beam search algorithms.

Beam Training Optimization in Millimeter-wave Systems under Beamwidth, Modulation and Coding Constraints

Millimeter-wave (mmWave) bands have the potential to enable significantly high data rates in wireless systems. In order to overcome intense path loss and severe shadowing in these bands, it is essential to employ directional beams for data transmission. Furthermore, it is known that the mmWave channel incorporates a few number of spatial clusters necessitating additional time to align the corresponding beams with the channel prior to data transmission. This procedure is known as beam training (BT). While a longer BT leads to more directional beams (equivalently higher beamforming gains), there is less time for data communication. In this paper, this trade-off is investigated for a time slotted system under practical constraints such as finite beamwidth resolution and discrete modulation and coding schemes. At each BT time slot, the access point (AP) scans a region of uncertainty by transmitting a probing packet and refines angle of arrival (AoA) estimate based on user equipment (UE) feedback. Given a total number time slots, the objective is to find the optimum allocation between BT and data transmission and a feasible beamwidth for the estimation of AoA at each BT time slot such that the expected throughput is maximized. It is shown that the problem satisfies the optimal substructure property enabling the use of a backward dynamic programming approach to find the optimal solution with polynomial computational complexity. Simulation results reveal that in practical scenarios, the proposed approach outperforms existing techniques such as exhaustive and bisection search.