DASH (Dynamic Adaptive Streaming over HTTP) is a widely-used streaming protocol that allows for the adaptive delivery of video content over the internet. DASH addresses the challenges of providing high-quality video content to wireless users by dynamically adjusting the video bitrate based on real-time network conditions and device capabilities.

Posts

Deep Learning-Based Real-Time Quality Control of Standard Video Compression for Live Streaming

Ensuring high-quality video content for wireless users has become increasingly vital. Nevertheless, maintaining a consistent level of video quality faces challenges due to the fluctuating encoded bitrate, primarily caused by dynamic video content, especially in live streaming scenarios. Video compression is typically employed to eliminate unnecessary redundancies within and between video frames, thereby reducing the required bandwidth for video transmission. The encoded bitrate and the quality of the compressed video depend on encoder parameters, specifically, the quantization parameter (QP). Poor choices of encoder parameters can result in reduced bandwidth efficiency and high likelihood of non-conformance. Non-conformance refers to the violation of the peak signal-to-noise ratio (PSNR) constraint for an encoded video segment. To address these issues, a real-time deep learning-based H.264 controller is proposed. This controller dynamically estimates the optimal encoder parameters based on the content of a video chunk with minimal delay. The objective is to maintain video quality in terms of PSNR above a specified threshold while minimizing the average bitrate of the compressed video. Experimental results, conducted on both QCIF dataset and a diverse range of random videos from public datasets, validate the effectiveness of this approach. Notably, it achieves improvements of up to 2.5 times in average bandwidth usage compared to the state-of-the-art adaptive bitrate video streaming, with a negligible non-conformance probability below 10?2.

Deep Learning-Based Real-Time Rate Control for Live Streaming on Wireless Networks

Providing wireless users with high-quality video content has become increasingly important. However, ensuring consistent video quality poses challenges due to variable encodedbitrate caused by dynamic video content and fluctuating channel bitrate caused by wireless fading effects. Suboptimal selection of encoder parameters can lead to video quality loss due to underutilized bandwidth or the introduction of video artifacts due to packet loss. To address this, a real-time deep learning-based H.264 controller is proposed. This controller leverages instantaneous channel quality data driven from the physical layer, along with the video chunk, to dynamically estimate the optimal encoder parameters with a negligible delay in real-time. The objective is to maintain an encoded video bitrate slightly below the available channel bitrate. Experimental results, conducted on both QCIF dataset and a diverse selection of random videos from public datasets, validate the effectiveness of the approach. Remarkably, improvements of 10-20 dB in PSNR with respect to the state-of-the art adaptive bitrate video streaming is achieved, with an average packet drop rate as low as 0.002.