Dimitris Metaxas works at Rutgers University.

Posts

Instantaneous Perception of Moving Objects in 3D

The perception of 3D motion of surrounding traffic participants is crucial for driving safety. While existing works primarily focus on general large motions, we contend that the instantaneous detection and quantification of subtle motions is equally important as they indicate the nuances in driving behavior that may be safety critical, such as behaviors near a stop sign of parking positions. We delve into this under-explored task, examining its unique challenges and developing our solution, accompanied by a carefully designed benchmark. Specifically, due to the lack of correspondences between consecutive frames of sparse Lidar point clouds, static objects might appear to be moving – the so-called swimming effect. This intertwines with the true object motion, thereby posing ambiguity in accurate estimation, especially for subtle motions. To address this, we propose to leverage local occupancy completion of object point clouds to densify the shape cue, and mitigate the impact of swimming artifacts. The occupancy completion is learned in an end-to-end fashion together with the detection of moving objects and the estimation of their motion, instantaneously as soon as objects start to move. Extensive experiments demonstrate superior performance compared to standard 3D motion estimation approaches, particularly highlighting our method’s specialized treatment of subtle motions.

Improving Test-Time Adaptation For Histopathology Image Segmentation: Gradient-To-Parameter Ratio Guided Feature Alignment

In the field of histopathology, computer-aided systems face significant challenges due to diverse domain shifts. They include variations in tissue source organ, preparation and scanningprotocols. These domain shifts can significantly impact algorithms’ performance in histopathology tasks, such as cancer segmentation. In this paper, we address this problem byproposing a new multi-task extension of test-time adaptation (TTA) for simultaneous semantic, and instance segmentation of nuclei. First, to mitigate domain shifts during testing, weuse a feature alignment TTA method, through which we adapt the feature vectors of the target data based on the feature vectors’ statistics derived from the source data. Second, the ratioof Gradient norm to Parameter norm (G2P) is proposed to guide the feature alignment procedure. Our approach requires a pre-trained model on the source data, without requiringaccess to the source dataset during TTA. This is particularly crucial in medical applications where access to training data may be restricted due to privacy concerns or patient consent. Through experimental validation, we demonstrate that the proposed method consistently yields competitive results when applied to out-of-distribution data across multiple datasets.

OmniLabel: A Challenging Benchmark for Language-Based Object Detection

Language-based object detection is a promising direction towards building a natural interface to describe objects in images that goes far beyond plain category names. While recent methods show great progress in that direction, proper evaluation is lacking. With OmniLabel, we propose a novel task definition, dataset, and evaluation metric. The task subsumes standard and open-vocabulary detection as well as referring expressions. With more than 30K unique object descriptions on over 25K images, OmniLabel provides a challenge benchmark with diverse and complex object descriptions in a naturally open-vocabulary setting. Moreover, a key differentiation to existing benchmarks is that our object descriptions can refer to one, multiple or even no object, hence, providing negative examples in free-form text. The proposed evaluation handles the large label space and judges performance via a modified average precision metric, which we validate by evaluating strong language-based baselines. OmniLabel indeed provides a challenging test bed for future research on language-based detection.

Improving Pseudo Labels for Open-Vocabulary Object Detection

Recent studies show promising performance in open-vocabulary object detection (OVD) using pseudo labels (PLs) from pretrained vision and language models (VLMs). However, PLs generated by VLMs are extremely noisy due to the gap between the pretraining objective of VLMs and OVD, which blocks further advances on PLs. In this paper, we aim to reduce the noise in PLs and propose a method called online Self-training And a Split-and-fusion head for OVD (SAS-Det). First, the self-training finetunes VLMs to generate high quality PLs while prevents forgetting the knowledge learned in the pretraining. Second, a split-and-fusion (SAF) head is designed to remove the noise in localization of PLs, which is usually ignored in existing methods. It also fuses complementary knowledge learned from both precise ground truth and noisy pseudo labels to boost the performance. Extensive experiments demonstrate SAS-Det is both efficient and effective. Our pseudo labeling is 3 times faster than prior methods. SAS-Det outperforms prior state-of-the-art models of the same scale by a clear margin and achieves 37.4 AP50 and 27.3 APr on novel categories of the COCO and LVIS benchmarks, respectively.

Exploiting Unlabeled Data with Vision and Language Models for Object Detection

Building robust and generic object detection frameworks requires scaling to larger label spaces and bigger training datasets. However, it is prohibitively costly to acquire annotations for thousands of categories at a large scale. We propose a novel method that leverages the rich semantics available in recent vision and language models to localize and classify objects in unlabeled images, effectively generating pseudo labels for object detection. Starting with a generic and class-agnostic region proposal mechanism, we use vision and language models to categorize each region of an image into any object category that is required for downstream tasks. We demonstrate the value of the generated pseudo labels in two specific tasks, open-vocabulary detection, where a model needs to generalize to unseen object categories, and semi-supervised object detection, where additional unlabeled images can be used to improve the model. Our empirical evaluation shows the effectiveness of the pseudo labels in both tasks, where we outperform competitive baselines and achieve a novel state-of-the-art for open-vocabulary object detection. Our code is available at https://github.com/xiaofeng94/VL-PLM.

AE-StyleGAN: Improved Training of Style-Based Auto-Encoders

StyleGANs have shown impressive results on data generation and manipulation in recent years, thanks to its disentangled style latent space. A lot of efforts have been made in inverting a pretrained generator, where an encoder is trained ad hoc after the generator is trained in a two-stage fashion. In this paper, we focus on style-based generators asking a scientific question: Does forcing such a generator to reconstruct real data lead to more disentangled latent space and make the inversion process from image to latent space easy? We describe a new methodology to train a style-based autoencoder where the encoder and generator are optimized end-to-end. We show that our proposed model consistently outperforms baselines in terms of image inversion and generation quality. Supplementary, code, and pretrained models are available on the project website.

Dual Projection Generative Adversarial Networks for Conditional Image Generation

Conditional Generative Adversarial Networks (cGANs) extend the standard unconditional GAN framework to learning joint data-label distributions from samples, and have been established as powerful generative models capable of generating high-fidelity imagery. A challenge of training such a model lies in properly infusing class information into its generator and discriminator. For the discriminator, class conditioning can be achieved by either (1) directly incorporating labels as input or (2) involving labels in an auxiliary classification loss. In this paper, we show that the former directly aligns the class-conditioned fake-and-real data distributions P (image|class) (data matching), while the latter aligns data-conditioned class distributions P (class|image) (label matching). Although class separability does not directly translate to sample quality and becomes a burden if classification itself is intrinsically difficult, the discriminator cannot provide useful guidance for the generator if features of distinct classes are mapped to the same point and thus become inseparable. Motivated by this intuition, we propose a Dual Projection GAN (P2GAN) model that learns to balance between data matching and label matching. We then propose an improved cGAN model with Auxiliary Classification that directly aligns the fake and real conditionals P (class|image) by minimizing their f-divergence. Experiments on a synthetic Mixture of Gaussian (MoG) dataset and a variety of real-world datasets including CIFAR100, ImageNet, and VGGFace2 demonstrate the efficacy of our proposed models.