Dimitris N. Metaxas works at Rutgers University.

Posts

Taming Self-Training for Open-Vocabulary Object Detection

Recent studies have shown promising performance in open-vocabulary object detection (OVD) by utilizing pseudo labels (PLs) from pretrained vision and language models (VLMs). However, teacher-student self-training, a powerful and widely used paradigm to leverage PLs, is rarely explored for OVD.

Generating Enhanced Negatives for Training Language-Based Object Detectors

The recent progress in language-based open-vocabulary object detection can be largely attributed to finding better ways of leveraging large-scale data with free-form text annotations. Training such models with a discriminative objective function has proven successful, but requires good positive and negative samples.

Improving Language-Based Object Detection by Explicit Generation of Negative Examples

The recent progress in language-based object detection with an open-vocabulary can be largely attributed to finding better ways of leveraging large-scale data with free-form text annotations. Training from image captions with grounded bounding boxes (ground truth or pseudo-labeled) enable the models to reason over an open-vocabulary and understand object descriptions in free-form text. In this work, we investigate the role of negative captions for training such language-based object detectors. While the fixed label space in standard object detection datasets clearly defines the set of negative classes, the free-form text used for language-based detection makes the space of potential negatives virtually infinite in size. We propose to leverage external knowledge bases and large-language-models to automatically generate contradictions for each caption in the training dataset. Furthermore, we leverage image-generate tools to create corresponding negative images to the contradicting caption. Such automatically generated data constitute hard negative examples for language-based detection and improve the model when trained from. Our experiments demonstrate the benefits of the automatically generated training data on two complex benchmarks.

Learning Transferable Reward for Query Object Localization with Policy Adaptation

We propose a reinforcement learning-based approach to query object localization, for which an agent is trained to localize objects of interest specified by a small exemplary set. We learn a transferable reward signal formulated using the exemplary set by ordinal metric learning. Our proposed method enables test-time policy adaptation to new environments where the reward signals are not readily available and outperforms fine-tuning approaches that are limited to annotated images. In addition, the transferable reward allows repurposing the trained agent from one specific class to another class. Experiments on corrupted MNIST, CU-Birds, and COCO datasets demonstrate the effectiveness of our approach.