Disentanglement refers to the process of learning representations for time series data in a way that separates and isolates different latent factors contributing to the complexity of the data. Time series representations often lack interpretability, and disentanglement aims to untangle these latent factors to create more interpretable and semantically meaningful representations.

Posts

Towards Counterfactual Fairness-aware Domain Generalization in Changing Environments

Recognizing domain generalization as a commonplace challenge in machine learning, data distribution might progressively evolve across a continuum of sequential domains in practical scenarios. While current methodologies primarily concentrate on bolstering model effectiveness within these new domains, they tend to neglect issues of fairness throughout the learning process. In response, we propose an innovative framework known as Disentanglement for Counterfactual Fairness-aware Domain Generalization (DCFDG). This approach adeptly removes domain-specific information and sensitive information from the embedded representation of classification features. To scrutinize the intricate interplay between semantic information, domain-specific information, and sensitive attributes, we systematically partition the exogenous factors into four latent variables. By incorporating fairness regularization, we utilize semantic information exclusively for classification purposes. Empirical validation on synthetic and authentic datasets substantiates the efficacy of our approach, demonstrating elevated accuracy levels while ensuring the preservation of fairness amidst the evolving landscape of continuous domains.

Towards Learning Disentangled Representations for Time Series

Promising progress has been made toward learning efficient time series representations in recent years, but the learned representations often lack interpretability and do not encode semantic meanings by the complex interactions of many latent factors. Learning representations that disentangle these latent factors can bring semantic-rich representations of time series and further enhance interpretability. However, directly adopting the sequential models, such as Long Short-Term Memory Variational AutoEncoder (LSTM-VAE), would encounter a Kullback?Leibler (KL) vanishing problem: the LSTM decoder often generates sequential data without efficiently using latent representations, and the latent spaces sometimes could even be independent of the observation space. And traditional disentanglement methods may intensify the trend of KL vanishing along with the disentanglement process, because they tend to penalize the mutual information between the latent space and the observations. In this paper, we propose Disentangle Time-Series, a novel disentanglement enhancement framework for time series data. Our framework achieves multi-level disentanglement by covering both individual latent factors and group semantic segments. We propose augmenting the original VAE objective by decomposing the evidence lower-bound and extracting evidence linking factorial representations to disentanglement. Additionally, we introduce a mutual information maximization term between the observation space to the latent space to alleviate the KL vanishing problem while preserving the disentanglement property. Experimental results on five real-world IoT datasets demonstrate that the representations learned by DTS achieve superior performance in various tasks with better interpretability.