Dongsheng Luo works at Florida International University.

Posts

Harnessing Vision Models for Time Series Analysis: A Survey

Time series analysis has witnessed the inspiring development from traditional autoregressive models, deep learning models, to recent Transformers and Large Language Models (LLMs). Efforts in leveraging vision models for time series analysis have also been made along the way but are less visible to the community due to the predominant research on sequence modeling in this domain. However, the discrepancy between continuous time series and the discrete token space of LLMs, and the challenges in explicitly modeling the correlations of variates in multivariate time series have shifted some research attentions to the equally successful Large Vision Models (LVMs) and Vision Language Models (VLMs). To fill the blank in the existing literature, this survey discusses the advantages of vision models over LLMs in time series analysis. It provides a comprehensive and in-depth overview of the existing methods, with dual views of detailed taxonomy that answer the key research questions including how to encode time series as images and how to model the imaged time series for various tasks. Additionally, we address the challenges in the pre- and post-processing steps involved in this framework and outline future directions to further advance time series analysis with vision models.

ICeTEA: Mixture of Detectors for Metric-Log Anomaly Detection

Anomaly detection is essential for identifying unusual system behaviors and has wide-ranging applications, from fraud detection to system monitoring. In web servers, anomalies are typically detected using two types of data: metrics (numerical indicators of performance) and logs (records of system events). While correlations between metrics and logs in real-world scenarios highlight the need for joint analysis, which is termed the “metric-log anomaly detection” problem, it has not been fully explored yet due to inherent differences between metrics and logs. In this paper, we propose ICeTEA, a novel system for metric-log anomaly detection that integrates three detectors: a metric-log detector based on a multimodal Variational Autoencoder (VAE), and two individual metric and log detectors. By leveraging the ensemble technique to combine outputs of these detectors, ICeTEA enhances the effectiveness and robustness of metric-log anomaly detection. Case studies demonstrate two key functionalities of ICeTEA: data visualization and rankings of contributions to anomaly scores. Experiments demonstrate that our proposed ICeTEA accurately detects true anomalies while significantly reducing false positives.

Exploring Multi-Modal Data with Tool-Augmented LLM Agents for Precise Causal Discovery

Causal discovery is an imperative foundation for decision-making across domains, such as smart health, AI for drug discovery and AIOps. Traditional statistical causal discovery methods, while well-established, predominantly rely on observational data and often overlook the semantic cues inherent in cause-and-effect relationships. The advent of Large Language Models (LLMs) has ushered in an affordable way of leveraging the semantic cues for knowledge-driven causal discovery, but the development of LLMs for causal discovery lags behind other areas, particularly in the exploration of multimodal data. To bridge the gap, we introduce MATMCD, a multi-agent system powered by tool-augmented LLMs. MATMCD has two key agents: a Data Augmentation agent that retrieves and processes modality-augmented data, and a Causal Constraint agent that integrates multi-modal data for knowledge-driven reasoning. The proposed design of the inner-workings ensures successful cooperation of the agents. Our empirical study across seven datasets suggests the significant potential of multi-modality enhanced causal discovery

F-Fidelity: A Robust Framework for Faithful-NESS Evaluation in Explainable AI

Recent research has developed a number of eXplainable AI (XAI) techniques, such as gradient-based approaches, input perturbation-base methods, and black-box explanation methods. While these XAI techniques can extract meaningful insights from deep learning models, how to properly evaluate them remains an open problem. The most widely used approach is to perturb or even remove what the XAI method considers to be the most important features in an input and observe the changes in the output prediction. This approach, although straightforward, suffers the Out-of-Distribution (OOD) problem as the perturbed samples may no longer follow the original data distribution. A recent method RemOve And Retrain (ROAR) solves the OOD issue by retraining the model with perturbed samples guided by explanations. However, using the model retrained based on XAI methods to evaluate these explainers may cause information leakage and thus lead to unfair comparisons. We propose Fine-tuned Fidelity (F-Fidelity), a robust evaluation framework for XAI, which utilizes i) an explanation-agnostic fine-tuning strategy, thus mitigating the information leakage issue, and ii) a random masking operation that ensures that the removal step does not generate an OOD input. We also design controlled experiments with state-of-the-art (SOTA) explainers and their degraded version to verify the correctness of our framework. We conduct experiments on multiple data modalities, such as images, time series, and natural language. The results demonstrate that F-Fidelity significantly improves upon prior evaluation metrics in recovering the ground-truth ranking of the explainers. Furthermore, we show both theoretically and empirically that, given a faithful explainer, F-Fidelity metric can be used to compute the sparsity of influential input components, i.e., to extract the true explanation size.

Parametric Augmentation for Time Series Contrastive Learning

Modern techniques like contrastive learning have been effectively used in many areas, including computer vision, natural language processing, and graph-structured data. Creating positive examples that assist the model in learning robust and discriminative representations is a crucial stage in contrastive learning approaches. Usually, preset human intuition directs the selection of relevant data augmentations. Due to patterns that are easily recognized by humans, this rule of thumb works well in the vision and language domains. However, it is impractical to visually inspect the temporal structures in time series. The diversity of time series augmentations at both the dataset and instance levels makes it difficult to choose meaningful augmentations on the fly. In this study, we address this gap by analyzing time series data augmentation using information theory and summarizing the most commonly adopted augmentations in a unified format. We then propose a contrastive learning framework with parametric augmentation, AutoTCL, which can be adaptively employed to support time series representation learning. The proposed approach is encoder-agnostic, allowing it to be seamlessly integrated with different backbone encoders. Experiments on univariate forecasting tasks demonstrate the highly competitive results of our method, with an average 6.5% reduction in MSE and 4.7% in MAE over the leading baselines. In classification tasks, AutoTCL achieves a 1.2% increase in average accuracy. The source code is available at https://github.com/AslanDing/AutoTCL.

Towards Robust Fidelity for Evaluating Explainability of Graph Neural Networks

Graph Neural Networks (GNNs) are neural models that leverage the dependency structure in graphical data via message passing among the graph nodes. GNNs have emerged as pivotal architectures in analyzing graph-structured data, and their expansive application in sensitive domains requires a comprehensive understanding of their decision-making processes — necessitating a framework for GNN explainability. An explanation function for GNNs takes a pre-trained GNN along with a graph as input, to produce a ‘sufficient statistic’ subgraph with respect to the graph label. A main challenge in studying GNN explainability is to provide f idelity measures that evaluate the performance of these explanation functions. This paper studies this foundational challenge, spotlighting the inherent limitations of prevailing fidelity metrics, including Fid+, Fid?, and Fid?. Specifically, a formal, information-theoretic definition of explainability is introduced and it is shown that existing metrics often fail to align with this definition across various statistical scenarios. The reason is due to potential distribution shifts when subgraphs are removed in computing these fidelity measures. Subsequently, a robust class of fidelity measures are introduced, and it is shown analytically that they are resilient to distribution shift issues and are applicable in a wide range of scenarios. Extensive empirical analysis on both synthetic and real datasets are provided to illustrate that the proposed metrics are more coherent with gold standard metrics. The source code is available at https://trustai4s-lab.github.io/fidelity.

AutoTCL: Automated Time Series Contrastive Learning with Adaptive Augmentations

Read AutoTCL: Automated Time Series Contrastive Learning with Adaptive Augmentations publication. Modern techniques like contrastive learning have been effectively used in many areas, including computer vision, natural language processing, and graph-structured data. Creating positive examples that assist the model in learning robust and discriminative representations is a crucial stage in contrastive learning approaches. Usually, preset human intuition directs the selection of relevant data augmentations. Due to patterns that are easily recognized by humans, this rule of thumb works well in the vision and language domains. However, it is impractical to visually inspect the temporal structures in time series. The diversity of time series augmentations at both the dataset and instance levels makes it difficult to choose meaningful augmentations on the fly. Thus, although prevalent, contrastive learning with data augmentation has been less studied in the time series domain. In this study, we address this gap by analyzing time series data augmentation using information theory and summarizing the most commonly adopted augmentations in a unified format. We then propose a parameterized augmentation method, AutoTCL, which can be adaptively employed to support time series representation learning. The proposed approach is encoder-agnostic, allowing it to be seamlessly integrated with different backbone encoders. Experiments on benchmark datasets demonstrate the highly competitive results of our method, with an average 10.3% reduction in MSE and 7.0% in MAE over the leading baselines.

Time Series Contrastive Learning with Information-Aware Augmentations

Various contrastive learning approaches have been proposed in recent years and have achieved significant empirical success. While effective and prevalent, contrastive learning has been less explored for time series data. A key component of contrastive learning is to select appropriate augmentations, imposing some priors to construct feasible positive samples, such that an encoder can be trained to learn robust and discriminative representations. Unlike image and language domains where “desired” augmented samples can be generated with the rule of thumb guided by prefabricated human priors, the ad-hoc manual selection of time series augmentations is hindered by their diverse and human-unrecognizable temporal structures. How to find the desired augmentations of time series data that are meaningful for given contrastive learning tasks and datasets remains an open question. In this work, we address the problem by encouraging both high fidelity and variety based on information theory. A theoretical analysis leads to the criteria for selecting feasible data augmentations. On top of that, we propose a new contrastive learning approach with information-aware augmentations, InfoTS, that adaptively selects optimal augmentations for time series representation learning. Experiments on various datasets show highly competitive performance with up to a 12.0% reduction in MSE on forecasting tasks and up to 3.7% relative improvement in accuracy on classification tasks over the leading baselines.

Personalized Federated Learning via Heterogeneous Modular Networks

Personalized Federated Learning (PFL) which collaboratively trains a federated model while considering local clients under privacy constraints has attracted much attention. Despite its popularity, it has been observed that existing PFL approaches result in sub-optimal solutions when the joint distribution among local clients diverges. To address this issue, we present Federated Modular Network (FedMN), a novel PFL approach that adaptively selects sub-modules from a module pool to assemble heterogeneous neural architectures for different clients. FedMN adopts a light-weighted routing hypernetwork to model the joint distribution on each client and produce the personalized selection of the module blocks for each client. To reduce the communication burden in existing FL, we develop an efficient way to interact between the clients and the server. We conduct extensive experiments on the real-world test beds and the results show both effectiveness and efficiency of the proposed FedMN over the baselines.

InfoGCL: Information-Aware Graph Contrastive Learning

InfoGCL: Information-Aware Graph Contrastive Learning Various graph contrastive learning models have been proposed to improve the performance of tasks on graph datasets in recent years. While effective and prevalent, these models are usually carefully customized. In particular, despite all recent work create two contrastive views, they differ in a variety of view augmentations, architectures, and objectives. It remains an open question how to build your graph contrastive learning model from scratch for particular graph tasks and datasets. In this work, we aim to fill this gap by studying how graph information is transformed and transferred during the contrastive learning process, and proposing an information-aware graph contrastive learning framework called InfoGCL. The key to the success of the proposed framework is to follow the Information Bottleneck principle to reduce the mutual information between contrastive parts while keeping task-relevant information intact at both the levels of the individual module and the entire framework so that the information loss during graph representation learning can be minimized. We show for the first time that all recent graph contrastive learning methods can be unified by our framework. Based on theoretical and empirical analysis on benchmark graph datasets, we show that InfoGCL achieves state-of-the-art performance in the settings of both graph classification and node classification tasks.