Posts

Learning Semantic Segmentation from Multiple Datasets with Label Shifts

Learning Semantic Segmentation from Multiple Datasets with Label Shifts While it is desirable to train segmentation models on an aggregation of multiple datasets, a major challenge is that the label space of each dataset may be in conflict with one another. To tackle this challenge, we propose UniSeg, an effective and model-agnostic approach to automatically train segmentation models across multiple datasets with heterogeneous label spaces, without requiring any manual relabeling efforts. Specifically, we introduce two new ideas that account for conflicting and co-occurring labels to achieve better generalization performance in unseen domains. First, we identify a gradient conflict in training incurred by mismatched label spaces and propose a class-independent binary cross-entropy loss to alleviate such label conflicts. Second, we propose a loss function that considers class-relationships across datasets for a better multi-dataset training scheme. Extensive quantitative and qualitative analyses on road-scene datasets show that UniSeg improves over multi-dataset baselines, especially on unseen datasets, e.g., achieving more than 8%p gain in IoU on KITTI. Furthermore, UniSeg achieves 39.4% IoU on the WildDash2 public benchmark, making it one of the strongest submissions in the zero-shot setting. Our project page is available at https://www.nec-labs.com/~mas/UniSeg.

Learning Semantic Segmentation from Multiple Datasets with Label Shifts

Learning Semantic Segmentation from Multiple Datasets with Label Shifts With increasing applications of semantic segmentation, numerous datasets have been proposed in the past few years. Yet labeling remains expensive, thus, it is desirable to jointly train models across aggregations of datasets to enhance data volume and diversity. However, label spaces differ across datasets and may even be in conflict with one another. This paper proposes UniSeg, an effective approach to automatically train models across multiple datasets with differing label spaces, without any manual relabeling efforts. Specifically, we propose two losses that account for conflicting and co occurring labels to achieve better generalization performance in unseen domains. First, a gradient conflict in training due to mismatched label spaces is identified and a class independent binary cross entropy loss is proposed to alleviate such label conflicts. Second, a loss function that considers class relationships across datasets is proposed for a better multi dataset training scheme. Extensive quantitative and qualitative analyses on road scene datasets show that UniSeg improves over multi dataset baselines, especially on unseen datasets, e.g., achieving more than 8% gain in IoU on KITTI averaged over all the settings.

Learning to Optimize Domain Specific Normalization for Domain Generalization

Learning to Optimize Domain Specific Normalization for Domain Generalization We propose a simple but effective multi-source domain generalization technique based on deep neural networks by incorporating optimized normalization layers that are specific to individual domains. Our approach employs multiple normalization methods while learning separate affine parameters per domain. For each domain, the activations are normalized by a weighted average of multiple normalization statistics. The normalization statistics are kept track of separately for each normalization type if necessary. Specifically, we employ batch and instance normalizations in our implementation to identify the best combination of these two normalization methods in each domain. The optimized normalization layers are effective to enhance the generalizability of the learned model. We demonstrate the state-of-the-art accuracy of our algorithm in the standard domain generalization benchmarks, as well as viability to further tasks such as multi-source domain adaptation and domain generalization in the presence of label noise.