Data Science and System Security

Read our publications from our Data Science & System Security researchers who aim to build novel big-data solutions and service platforms to simplify complex systems management. We develop new information technology that supports innovative applications, from big data analytics to the Internet of Things. Our experimental and theoretical research includes many data science and systems research domains including time series mining, deep learning, NLP and large language models, graph mining, signal processing, and cloud computing.

Posts

Towards a Timely Causality Analysis for Enterprise Security

The increasingly sophisticated Advanced Persistent Threat (APT) attacks have become a serious challenge for enterprise IT security. Attack causality analysis, which tracks multi-hop causal relationships between files and processes to diagnose attack provenances and consequences, is the first step towards understanding APT attacks and taking appropriate responses. Since attack causality analysis is a time-critical mission, it is essential to design causality tracking systems that extract useful attack information in a timely manner. However, prior work is limited in serving this need. Existing approaches have largely focused on pruning causal dependencies totally irrelevant to the attack, but fail to differentiate and prioritize abnormal events from numerous relevant, yet benign and complicated system operations, resulting in long investigation time and slow responses.